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Abstract. Inheritance and method overriding are crucial concepts in
object-oriented programming (OOP) languages. These concepts support
a hierarchy of classes that reuse common data and methods. Most ex-
isting works for OO verification focus on modular reasoning in which
they could support dynamic dispatching and thus efficiently enforce the
Liskov substitution principle on behavioural subtyping. They are based
on superclass abstraction to reason about the correctness of OO pro-
grams. However, techniques to reason about the incorrectness of OOP
are yet to be investigated.
In this paper, we present a mechanism that 1) specifies the normal and
abnormal executions of OO programs by using ok specifications and
er specifications respectively; 2) verifies these specifications by a novel
under-approximation proof system based on incorrectness logic that can
support dynamic modularity. We introduce subclass reflection with dy-
namic views and an adapted subtyping relation for under-approximation.
Our proposal can deal with both OOP aspects (e.g., behavioural subtyp-
ing and casting) and under-approximation aspects (e.g., dropping paths).
To demonstrate how the proposed proof system can soundly verify the
specifications, we prove its soundness, prototype the proof system, and
report on experimental results. The results show that our system can pre-
cisely reason about the incorrectness of programs with OOP aspects, such
as proving the presence of casting errors and null-pointer-exceptions.

1 Introduction

Proving the correctness and incorrectness of programs are two sides of a coin. On
one side is Hoare logic, the pioneering formal system for correctness reasoning.
Its central feature is Hoare triple, denoted by {pre} S {post} where pre and
post are assertion formulae in some logic, and S is a program written in some
programming languages. This triple means if we execute S starting from any
program state σ (σ are valuations of program variables) satisfying pre and if
it terminates, we will obtain program states σ′ satisfying post . We refer σ′ as
reachable states from pre. This interpretation implies:

– post may be an over-approximation of reachable states, i.e., some of its states
may satisfy post but do not correspond to a terminating execution associated
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with a starting state satisfying pre. As such, Hoare logic is primarily used
for correctness proving. Given a program S, a precondition pre, and an as-
sertion bad representing buggy states, to prove that S is safe, we can show
{pre} S {post} is valid and the post does not contain any bad states.

– Hoare logic cannot be used to prove the incorrectness of programs (i.e., con-
firming that S has a bad property by establishing post∧ bad that is satisfiable
is inaccurate). This is due to an over-approximating post state.

Recently, O’Hearn completed the other side of the puzzle with incorrectness
logic (IL) [22]. Its centrepiece is IL triple, the under-approximation counterpart
of Hoare triple. An IL triple, written as [pre] S [post], states that each state of
σ′, that satisfies post , is a reachable state from executing S from one or more
inputs satisfying pre. Given an IL triple [pre] S [post] and a buggy assertion bad,
S has a bug if post ∧ bad is satisfiable. With this, we can always find a counter-
example whose input value(s) satisfy pre from which S goes bad. Notably, Pulse-
X, a recent IL analyser [12], found 15 new bugs in OpenSSL and showed the
importance of incorrectness reasoning for the industrial codebase.

Though IL is a significant advance to under-approximating reasoning, it is
currently limited to static modularity and does not support dynamic modularity
for object-oriented programming (OOP). OOP is one of the vital components
in many imperative programming languages (e.g., Java, Scala and C#). An
OO program is a collection of classes, each of which contains a set of fields
and methods. Classes could be subclasses of others to form a class hierarchy.
Methods of the superclass can be inherited or overridden by the subclass. The
design of OOP must adhere to the Liskov substitution principle on behavioural
subtyping [18]: An object of a subclass can always substitute an object of the
superclass, and dynamic dispatching of a method is determined based on its
actual type at the runtime. Most existing OO verification works focus on the
support of dynamic modularity to enforce the substitutivity efficiently. While
these works support correctness reasoning with superclass abstraction in Hoare
logic (e.g., [9,10,14,15]) or its extension, separation logic (e.g., [5,20,24,25]), none
focuses on the incorrectness of programs. Therefore, incorrectness reasoning in
OO programs is worth investigating.

We introduce IL for OOP, with the following challenge: How to support dy-
namic modularity to enforce behavioural subtyping in under-approximation? A
key observation is that the superclasses are unaware of the behaviours of exten-
sion fields in the subclasses. However, the subclasses can reflect the reachable
states for fields inherited from the superclasses. Hence, the specifications of the
subclass methods can be used to show the behaviours of the subclass itself and
the superclasses. We call this subclass reflection.

In some prior works [5,25] on correctness reasoning, they propose the co-
existence of static and dynamic specifications. A static specification (spec) spec-
ifies the functional properties of each method, while a dynamic spec can be
used to verify dynamic dispatching; and the specification subtyping relation be-
tween static/dynamic specs ensures behavioural subtyping. Similar to the prior
works, we propose static specs and reflexive specs to specify OO programs in
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under-approximation: A static spec under-approximates a single method while
a reflexive spec under-approximates methods of one class and its superclasses.
Moreover, we propose dynamic views which can efficiently support subclass re-
flection and reason about casting operations. Our primary contributions are as
follows.

– We present an under-approximate approach to OO verification. Our proposal
extends incorrectness logic, with subclass reflection using dynamic views, to
specify both normal and incorrect behaviours of OO programs.

– We introduce a proof system that supports dynamic modularity (including
dynamic dispatching for class inheritance, casting operator and instanceof
operator) and under-approximating reasoning via dropping paths and classes.

– We prototype the proposal in a verifier, called OURify (OO program Under-
approximation Verifier), and demonstrate its capability of proving the incor-
rectness of OO programs, which is beyond the state-of-the-art.

Organization. Sect. 2 illustrates our proposal with examples. Sect. 3 presents the
target language and the assertion language. The proof system and our approach
to behaviour subtyping are shown in Sect. 4. Sect. 5 discusses our implementation
OURify. Finally, Sect. 6 shows related work and concludes.

2 Motivation and Overview

We first explain the dynamic modularity problem and how existing proposals
address it in correctness reasoning using Hoare logic and separation logic (Sect.
2.1). After that, in Sect. 2.2, we discuss the motivation of a novel foundation for
incorrectness reasoning via incorrectness logic by highlighting the fundamental
differences between Hoare logic and incorrectness logic. Afterwards, we infor-
mally describe our proposal for incorrectness reasoning.

2.1 Correctness Reasoning with Superclass Abstraction

When the type of an object is dynamically determined, is there a modular way to
verify this object without explicitly considering all the method implementations?
Liskov substitution principle answers this question: the subclass implementation
must satisfy the specification of the superclass for each inherited or overridden
method. This process requires re-verification as all subclasses need to be checked
and could be polynomial in the numbers of inherited classes.

To avoid re-verification and enforce behavioural subtyping efficiently, prior
works [5,25] suggest that each method has a pair of specs: a static spec for
the verification of its implementation and a dynamic spec involving behaviour
subtyping. Furthermore, a method’s static spec is a subtype (written as <:O)
of its dynamic spec. A method’s dynamic spec in the subclass is a subtype
of the dynamic spec in its superclass. This mechanism enhances behavioural
subtyping, such that the dynamic spec of a superclass’s method abstracts (pos-
sibly over-approximating) behaviours of all its subclass methods. This is the
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so-called superclass abstraction. Suppose that superclass C has a method mn
with spec {preC} {postC}, and D is a subclass of C – denoted as D ≺ C, and
D.mn overrides/inherits from C.mn. Then, for all D.mn’s spec {preD} {postD},
{preD} {postD}<:O{preC} {postC}, where the relation <:O is defined as:

preC ∧ type(this)≺D |= preD postD |= postC
{preD} {postD} <:O {preC} {postC}

(Note that the relations proposed in separation logic [5,24,25] consider frame
inference in the premises, which is a generic form of entailment problem.) Re-
garding this relation, we have the following two observations.

– First, the entailment checks are not straightforward, as the specs are from two
different classes. Various approaches [8,25,5] have been applied to address this
issue. For example, the extension predicate [5] encodes fields from multiple
objects (e.g., one superclass and its subclasses) in a single predicate. When
the extension predicate is used with the subtype constraint type(this)≺D, the
entailments are checked for the subclass D.

– Second, the subtyping relation enforces subtyping behaviour without requir-
ing re-verification. For any program S s.t. {preD}S{postD} is valid, then the
subtyping relation and the consequence rule of Hoare logic (rule HL-Conseq
below) ensure so is {preC}S{postC}.

preC |= preD {preD} S {postD} postD |= postC
(HL-Conseq)

{preC} S {postC}

We notice a phenomenon in which inheritance is not subtyping [7], i.e. sub-
class instances behave differently from instances of its superclass. One solution
to address such odd instances is to provide over-approximation for superclass
abstraction (shown in the following example). Alternatively, Dhara and Leavens
[8] propose a specification inheritance technique in which the specification of the
overriding method is strengthened by conjoining it with the specification of the
overridden method. This technique was realized in separation logic via multiple
specs [5] or specs with the also keyword [25].

1 class Cnt {
2 int val;
3 void tick()
4 {this.val := this.val +1;}}
5

6 class DblCnt extends Cnt{
7 int bak;
8 override void tick()
9 {this.bak := this.val;

10 if (*) super.tick();
11 else
12 this.val := this.val +2;}}

Fig. 1. Illustrative example

We elaborate on subtyping be-
haviour through the code shown in
Fig. 1. It defines two classes: the su-
perclass Cnt and the subclass DblCnt.
Cnt includes a field val and a method
tick, which increases val by one.
DblCnt inherits val, defines another
field bak and overrides the method
tick. Method DblCnt.tick() addi-
tionally backs up the value of val in
bak and nondeterministically increases
val by 1 (on line 10) or 2 (on line 12).
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While the if branch shows the subtyping behaviour of DblCnt.tick(), the else
branch does not.

To write method specifications, we need to define an abstraction that captures
all fields of the two classes. For instance, we follow the approach introduced in
[5] to define an extension predicate in separation logic. The abstraction is:

this::Cnt⟨t, v, p⟩ ∗ p::ExtAll(Cnt, t)

this::Cnt⟨t, v, p⟩ defines the superclass. t is the actual type of this object; value
v is the field val. p is the reference to subclass extensions. ∗ is the separating
conjunction, and predicate p::ExtAll(Cnt, t) defines a chain of subclasses from
Cnt to t. ExtAll(Cnt, t) is defined as the following:

p :: ExtAll(Cnt, t) ≡ t = Cnt ∧ p = null
∨ p::Ext⟨t1, v, p1⟩ ∗ p1::ExtAll(t1, t) ∧ (t1 ≺1 Cnt) ∧ (t ≺ t1)

Where t1 ≺1 Cnt means t1 is an immediate subclass of Cnt and t ≺ t1 means t
is a subclass of t1. With this abstraction, Cnt is realized as:

this::Cnt⟨Cnt, v, p⟩ ∗ p::ExtAll(Cnt, Cnt) = this::Cnt⟨Cnt, v,null⟩

And DblCnt is this::Cnt⟨DblCnt, v, p⟩ ∗ p::ExtAll(Cnt, DblCnt) which is equiva-
lent with this::Cnt⟨DblCnt, v, p⟩ ∗ p::Ext⟨DblCnt, b,null⟩ ∧ DblCnt ≺1 Cnt.

Using these predicates, we can write static and dynamic specs for two meth-
ods tick. First, methods Cnt.tick and DblCnt.tick are specified and statically
verified by the following two static specs, respectively.

static {this::Cnt⟨Cnt, v,null⟩} Cnt.tick() {this::Cnt⟨Cnt, v + 1,null⟩}
static {this::Cnt⟨DblCnt, v, p⟩ ∗ p::Ext⟨DblCnt, ,null⟩ ∧ DblCnt ≺1 Cnt}

DblCnt.tick()
{this::Cnt⟨DblCnt, v′, p⟩ ∗ p::Ext⟨DblCnt, v,null⟩ ∧ DblCnt ≺1 Cnt

∧ v + 1 ≤ v′ ≤ v + 2}

Similarly, each method tick is annotated with another dynamic spec, which
is used for dynamic dispatching verification.

dynamic {this::Cnt⟨t, v, p⟩ ∗ p::ExtAll(Cnt, t)}
Cnt.tick()

{this::Cnt⟨t, v′, p⟩ ∗ p::ExtAll(Cnt, t) ∧ v′ > v}

dynamic {this::Cnt⟨t, v, p⟩ ∗ p::Ext⟨DblCnt, , p1⟩
∗p1::ExtAll(DblCnt, t) ∧ DblCnt ≺1 Cnt}

DblCnt.tick()
{this::Cnt⟨t, v′, p⟩ ∗ p::Ext⟨DblCnt, v, p1⟩

∗p1::ExtAll(DblCnt, t) ∧ DblCnt ≺1 Cnt ∧ v+1 ≤ v′ ≤ v+2}

Next, to enforce behaviour subtyping, we first check whether the static spec
of method Cnt.tick() is a subtype of its dynamic spec. Secondly, we check
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whether the dynamic spec of DblCnt.tick() is a subtype of the dynamic spec of
Cnt.tick(). With these specs above, all these checks are valid. Hence, this valid-
ity guarantees behavioural subtyping without requiring re-verification. Moreover,
any dynamic dispatching call with the receiver of static type Cnt can use the
dynamic specification in class Cnt.

2.2 Incorrectness Reasoning with Subclass Reflection

Hoare logic and IL have different foundations. Technically, IL has another con-
sequence rule with a reversed entailment in the premises.

preD |= preC [preD] S [postD] postC |= postD
(IL− Conseq)

[preC ] S [postC ]

Second, an analyser using Hoare logic has to prove the safety of all program
paths to show the absence of bugs in a program. In contrast, to show the pres-
ence of a bug, an analyser using IL could drop paths. A critical insight from
the IL-Conseq rule is that the postcondition can be under-approximated, e.g.,
dropping paths/disjuncts for scalability. Superclass abstraction cannot be eas-
ily adapted to capture reachable states for subclasses in under-approximation.
As the above example shows, the dynamic spec of Cnt.tick only records the
change in the val field; we cannot conclude any information for the bak field. As
a result, we cannot find precise reachable states for the subclass of Cnt when a
dynamic dispatching call is performed.

We observe that while superclasses are unaware of reachable states of ex-
tended fields in the subclasses, the subclasses should satisfy the constraints
(reachable states) over fields inherited from superclasses. To uphold the sub-
stitution principle in under-approximating reasoning, we require the inherited
fields in the postcondition of a subclass method are not weaker than its coun-
terpart in the superclass.

Based on this observation, we introduce subclass reflection to handle dynamic
dispatching calls for under-approximating reasoning. Superclass abstraction is a
top-down approach while subclass reflection is bottom-up. An abstraction for
under-approximation could be behaviours of a subset of a class hierarchy. With
this setting, we write reflexive specifications in subclasses to reflect their super-
classes’ behaviours. Hence, each subclass will take care of one class chain in a
class hierarchy.

Given a subclass methodD.mn, for allD.mn’s specs [preD] [postD], there exists
some specs [preC ] [postC ] of method mn in the superclass C such that
[preC ] [postC ] <:U [preD] [postD] where the relation <:U

3 is defined as:

preC |= preD postD ∧ type(this) = C |= postC
[preC ] [postC ] <:U [preD] [postD]

If [preC ] [postC ] <:U [preD] [postD] , then for all S, and [preC ] S [postC ],
we have [preD] S [postD ∧ type(this) = C]. Note that, the type constraint here

3 This definition is slightly different from the version in Definition 2 for simplicity.
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is type(this) = C which is different from type(this) ≺ D in <:O. This is because
subclass reflection requires postD to reflect its superclass C. We now demonstrate
our proposal through the example in Fig. 1. The reflexive spec of Cnt.tick is
the same as its static spec since Cnt is the only type to be reflected by Cnt:

static/reflex [this::Cnt⟨v⟩] tick() [ok: this::Cnt⟨v + 1⟩]
Note that, ok denotes postconditions in normal executions. Objects that need
to be reflected by DblCnt are this::Cnt⟨v⟩ ∨ this::DblCnt⟨v, b⟩. We propose a
dynamic view as: this::Cnt⟨v⟩DblCnt⟨b⟩ to represent this disjunction.

static [this::DblCnt⟨v, b⟩] tick() [ok: this::DblCnt⟨v′, v⟩ ∧ v+1≤v′≤v+2]
reflex [this::Cnt⟨v⟩DblCnt⟨b⟩] tick() [ok: this::Cnt⟨v+1⟩DblCnt⟨v⟩]

The else branch of DblCnt.tick has been dropped in the reflexive spec.
Let reflex(mn) (resp. static(mn)) be the reflexive (resp. static) spec of

method mn. To show that reflex(DblCnt.tick) is valid for both DblCnt.tick
and Cnt.tick, we prove both 1) static(DblCnt.tick) <:U reflex(DblCnt.tick)
and 2) reflex(Cnt.tick) <:U reflex(DblCnt.tick). We illustrate 1) here,

this::DblCnt⟨v, b⟩ |= this::Cnt⟨v⟩DblCnt⟨b⟩ //checking for pre

this::Cnt⟨v+1⟩DblCnt⟨v⟩ ∧ (type(this) = DblCnt) //checking for post

⇒(this::Cnt⟨v+1⟩ ∨ this::DblCnt⟨v+1, v⟩) ∧ (type(this) = DblCnt)

⇒this::DblCnt⟨v+1, v⟩ |= this::DblCnt⟨v′, v⟩ ∧ v+1≤v′≤v+2

By doing so, we validate reflex(DblCnt.tick) without verifying it against
the method bodies. We show a simple example in Fig. 2. The precondition
before the dispatching call (line 3) shows that object x has a dynamic view
x::Cnt⟨v⟩DblCnt⟨b⟩. We will retrieve a reflexive spec according to the last type
in this dynamic view. Hence, the reflexive spec in DblCnt is chosen as it also
reflects the types before DblCnt in this dynamic view. Alternatively, if we want
to capture the else branch of DblCnt, another reflexive spec in DblCnt.tick()
could be: [this::Cnt⟨v⟩DblCnt⟨b⟩] [ok: this::DblCnt⟨v+2, v⟩]. This reflexive spec
drops the path from Cnt. Hence, we do not have to check reflex(Cnt.tick) <:U
reflex(DblCnt.tick) for this spec as the relation is trivially true.

1 void goo(Cnt x) {...
2 [x::Cnt⟨v⟩DblCnt⟨b⟩]
3 x.tick();
4 [ok: x::Cnt⟨v + 1⟩DblCnt⟨v⟩]
5 y := (DblCnt) x;
6 [ok: x::DblCnt⟨v + 1, v⟩ ∧ y = x]
7 [er: x::Cnt⟨v + 1⟩]
8 ...}

Fig. 2. Example on casting

Our dynamic view can reason
about casting, which is extensively
used in OOP. For instance, Fig. 2
shows a casting operation performed
on object x. x’s type is either Cnt or
DblCnt. On line 5, as x is casting to
DblCnt, based on x’s possible types,
our system splits into cases with ok
spec on line 6 and er spec on line 7,
respectively. By so doing, our system
can discover bugs relating to casting effectively. The efficiency is also confirmed
by our experiments: Our system can prove casting bugs which are beyond Pulse,
the bug checker used in products at Meta and other big-tech companies.
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3 Language and Specifications

The section presents the core OO language and our assertion grammar.

3.1 Syntax of the Target Language

Fig. 3 presents our core language. We assume the language uses single inheritance
and pass-by-value mechanism. Object is an implicit superclass of all classes,
x, y... for program variables, C,D... for class names, e and B for expressions and
boolean expressions respectively, and x.f for the field f of x. Boolean expression
x instanceof C is true if x is in class C or a subclass of C.

P :: = cdef;

cdef :: = class C1 extends C2 {t f ; meth}
τ :: = int | bool | void t :: = C | τ

sp, rp :: = [P ] [ϵ:Q]

meth :: = mtype t mn (t x) [static sp] [reflexive rp] {S; return y}
mtype :: = virtual | inherit | override

S :: = skip | x :=e | x .f :=y | x :=y .f | t x ; S | y :=(C ) x | x :=new C (y)

| y :=x .mn(z )| y :=x instanceof C | S; S | assume(B) | S+ S

Fig. 3. A core Object-Oriented language.

A program P is a collection of class definitions. A class declares its super-
class via keyword extends. A class consists of fields, method declarations and
definitions. Each method meth will be annotated as virtual, inherit or override.
A virtual method only exists in the subclass but not its superclass. An inherit
method uses the same method body as its superclass. Lastly, an overridemethod
re-defines the method body in the subclass. Each method is annotated with two
specifications: one is static sp and another is reflexive rp. ϵ is program status:
ok (for normal executions) and er (for abnormal ones).

3.2 Semantics

Val defines values of variables including integers, booleans, locations Loc, and
null . A program state σ ∈ PState is a tuple, including a stack s ∈ Stack ,
that maps variables to values, Val , and a heap h ∈ Heap, that partially maps
addresses to the contents. A heap h includes two mappings: h.1 maps locations
to class names (dynamic type of an object) and h.2 maps location-field tuples
to Val . The semantics is the relation of statements S, exit conditions ϵ, and
program states σ.

σ ∈ PState
def
= Stack ×Heap s ∈ Stack

def
= Var→Val v ∈ Val

h ∈ Heap
def
= (Loc ⇀ Classes)× (Loc × Field ⇀ Val) l ∈ Loc ⊆ Val

J.K def
= Statement× Exit×P(PState × PState) ϵ ∈ Exit

def
= {ok, er}
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The relational denotational semantics is presented in Appendix A – Fig. 6.
We discuss the semantics of two commands: casting and instanceof in detail.
The semantics of casting is as follows:

Jy:=(C) xKok def
= {((s, h), (s[y 7→ s(x)], h))| (h.1(s(x)) = C1 ∧ C1≺C) ∨ s(x) = null}

Jy:=(C) xKer def
= {((s, h), (s, h))| h.1(s(x)) = C1 ∧ C1 ̸≺C}

Casting an object to its superclass is always successful, while it is erroneous
another way around. For instance, downcasting a heap object with a type C to
its subclass (not itself) or any unrelated class causes an error. The statement
instanceof is used to check object types before casting.

Class hierarchy is collected via extends keyword. When for each C1 extends C2,
{C1≺C2} is added to the environment. We can query the class hierarchy envi-
ronment for the subtyping relation between classes. This relation is reflexive and
transitive. We use notations C2≺1C1 to mean C2 is the immediate subclass of
C1. x instanceof C is a side-effect-free Boolean expression. Its semantics is as
follows:

BJx instanceof CK(s, h) def
= False iff s(x) = null ∨ (h.1(s(x)) ̸≺ C)

BJx instanceof CK(s, h) def
= True iff (h.1(s(x)) ≺ C)

3.3 Assertion Language

We here present the assertion language, an extension of separation logic [5] with
IL. Fig. 4 presents the syntax of the specification language (while the semantics
can be found in Appendix A - Fig. 7). The separation conjunction κ1 ∗ κ2 de-
scribes two non-overlapping heaps, κ1 and κ2. x.f 7→e stands for an object x has a
field f which points to e and x : C stands for the type for x stored in a heap is C.
To simplify the notation, we encode a heap object in the form of x 7→C⟨e⟩, mean-
ing that the object x of exact type C has fields x.f1 7→e1, x.f2 7→e2, · · ·x.fn 7→en.
That said, x 7→C⟨e⟩ = x : C ∗ x.f1 7→e1 ∗ x.f2 7→e2 ∗ · · ·x.fn 7→en.

P,Q :: = (κ∧ϕ) | P ∨Q | ∃x.P κ :: = emp | x.f 7→e | x : C | x7→C⟨e⟩ | κ1 ∗ κ2

ϕ :: = False | C ≺ C | x = e | x < e | ϕ1 ∧ ϕ2 | ϕ1∨ϕ2 | ¬ϕ | ϕ1⇒ϕ2

Fig. 4. Assertion language.

We also call x7→C⟨e⟩ a static view, which describes a single object. In addition,
we introduce the dynamic view to handle the dynamically dispatched method
call. The dynamic view is in the form of x::C1⟨e1⟩C2⟨e2⟩ · · ·Cn⟨en⟩ which is a
collection of static views of objects along a class chain from C1 to Cn in a
class hierarchy. Specifically, it is syntactic sugar for the disjunction of objects,
i.e. x 7→C1⟨e1⟩ ∨ x7→C2⟨e1, e2⟩ · · · ∨ x7→Cn⟨e1, · · · en⟩. The subclass objects have to
maintain the same state for the fields inherited from its superclass to form a
valid dynamic view.
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IL triples. An IL triple is of the following form: ⊨ [P ] S [ϵ:Q]. In contrast to Hoare
logic, the postcondition Q is an under-approximation of all possible execution
paths and any state in Q, is reachable from some states satisfying P . Formally,

⊨ [P ] S [ϵ:Q]
def
= ∀σ ∈ JQK. ∃σ′ ∈ JP K.(σ′, σ) ∈ JSKϵ.

4 Proof system for under-approximating reasoning

We propose specification subtyping in 4.1 and the mechanism of static and re-
flexive specifications in 4.2. Finally, proof rules are shown in 4.3.

4.1 Behavioural Subtyping

Liskov substitution principle (behaviour subtyping) [17,18] gives a general guide-
line for OOP design, which is crucial to the dynamic modularity problem. In
under-approximation, we uphold this principle. Firstly, we define the specifica-
tion subtyping for IL triples.

Definition 1 (Specification subtyping). Given an IL specification [PC ] [ϵ:QC ]

and another IL specification [PD] [ϵ:QD]. We say [PC ] [ϵ:QC ] is a subtype specifi-
cation of [PD] [ϵ:QD] if the following holds,

QD |= QC ∗ F F ∗ PC |= PD

[PC ] [ϵ:QC ] <: [PD] [ϵ:QD]

This definition is a corollary of IL consequence rule and the frame rule. The
frame F can be calculated via the postcondition entailment proving. Then, F
will be carried forward for the precondition entailment proving. Any program
satisfying [PC ] [ϵ:QC ] will satisfy [PD] [ϵ:QD].

Recap that the inherited fields in a behavioural subtype should not reach
more states than the superclass. This is the key point to uphold Liskov substi-
tution principle in under-approximation. For instance, we would not expect a
buggy state to be reachable by a method in the subclass but unreachable in the
superclass. Otherwise, the superclass is not replaceable as the program will intro-
duce new errors with the subclass. Hence, according to the above definition, the
under-approximation specification of a superclass should be a subtype of that
in the subclass. In other words, the subclass specification needs to reflect its
superclass’s behaviours. We call it subclass reflection. With subclass reflection,
the dynamic dispatching call can be handled efficiently.

However, as subclasses might extend superclasses with extra fields, checking
Definition 1 is not straightforward. To address this issue, we incorporate static
view and dynamic view. Recall that the dynamic view is a disjunction of multiple
objects. We allow a constraint type(x) ∈ T to assert if the type of object x is in
a set T of types. Hence, we can check specifications for objects that only belong
to T . For example,

this::C⟨e1⟩D⟨e2⟩ ∧ type(this) ∈ {C}
⇒(this7→C⟨e1⟩ ∨ this7→D⟨e1, e2⟩) ∧ type(this) ∈ {C}
⇒this7→C⟨e1⟩
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We mainly need two kinds of implications between static view and dynamic
view in our verification processes 4.2.

Lemma 1 (View relationship).

this::C⟨e1⟩D⟨e2⟩E⟨e3⟩ ∧ type(this) ∈ {E} ⇒ this7→E⟨e1, e2, e3⟩

this::C⟨e1⟩D⟨e2⟩E⟨e3⟩ ∧ type(this) ∈ {C,D} ⇒ this::C⟨e1⟩D⟨e2⟩

Now, we introduce the specification subtyping for behavioural subtyping.

Definition 2 (Behavioural Subtyping). We say that the under-approximation
specification [PC ] [ϵ:QC ] for a method mn in superclass C and another [PD] [ϵ:QD]
for mn in subclass D cater to behavioural subtyping if the following holds,

QD ∧ type(this) ∈ TC |= QC ∗ F F ∗ PC |= PD

[PC ] [ϵ:QC ] <:U [PD] [ϵ:QD]

where TC is the set of types pointed to by this reference in C’s specification.
We use <:U to capture this relationship.

4.2 Static and Reflexive Specifications

In some previous works [5,25], static and dynamic specification co-existence has
been proposed to handle method verification and behavioural subtyping. We
introduce a similar mechanism in an under-approximation flavour. We use the
special variable this to denote the reference of the current object.

Static Specification Static specification is a description of a single method. The
static view must describe the object referred to by this in the static specification.
Hence, the static specification should be precise (the precondition needs to be
as strong as possible, and the postcondition needs to be as weak as possible).

Reflexive Specification Reflexive specification is used for two purposes. Firstly, it
ensures behavioural subtyping: i) The reflexive specification in the superclass is
a subtype of the reflexive specification in the subclass; ii) the static specification
of a method needs to be a subtype of the corresponding reflexive specification.
Secondly, it is used for dynamically dispatching calls. To model dynamic dis-
patching, the dynamic views encode the state of multiple objects along a class
chain. Any object in a dynamic view could be dispatched for a dynamic call. In
contrast to the static specification, we use dynamic view for this reference in
reflexive specifications.

Static/Reflexive Specification Verification. We now discuss the relation-
ship between these two specifications in class inheritance. The first one is virtual
method whose implementation only exists in subclasses. Note that, one speci-
fication can be both static and reflexive in the virtual method as there is no
superclass to reflect.
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sp=[P ] [ϵ:Q]
[P ] S; return y [ϵ:Q] (Spec verification)

virtual t1 mn (t̄2 x ) [static sp] [reflexive sp] {S; return y} in C

Spec verification is the verification of the static specification against the
method body by using our proof rules in Sec. 4.3 and Appendix C.

Second, an inherited method in the subclass uses the same implementa-
tion from its superclass: Inherited methods are semantically equivalent in both
classes. The prior work [5] defines a notion called “statically-inherited” methods.
A method is statically inherited by the subclass if (1) it does not override the
original implementation and (2) if the method calls any other method mn inside
the body, mn must also be statically-inherited. For simplicity, we assume every
inherited method is statically-inherited as a non-statically-inherited method can
always be transferred into an overriding method. To verify the static specifica-
tion for the inherited method in the subclass, we can check whether its specifi-
cation is compatible with the corresponding static specification in the superclass.
Compatible(sp′, sp) means that sp is derivable from sp′ using consequence rule
or frame rule, i.e. sp′ <: sp, which is defined in Definition 1.

D≺1C spc=static(C .mn) rpc=reflex(C .mn) sp′c=spc[this : D/this : C ]
Compatible(sp′c, sp) (Spec verification)
sp <:U rp (Dynamic Dispatch)
rpc <:U rp (Behavioural subtyping)

inherit t1 mn (t̄2 x ) [static sp] [reflexive rp] {} in D

Note that, sp′c = spc[this : D/this : C] is valid when the superclass imple-
mentation does not access the type information of this. If the implementation
accesses the type information of this, we need to verify the implementation
against the static specification of the subclass.

Lastly, an overriding method redefines the procedure performed in a sub-
class. Hence, the superclass and the subclass may behave differently. However,
the subclass can still be behavioural subtyping if both classes obey the rule in
Definition 2. Again, we require the same relation holds for those specifications.

D≺1C rpc=reflex(C .mn) sp=[P ] [ϵ:Q]
[P ] S; return y [ϵ:Q] (Spec verification)
sp <:U rp (Dynamic Dispatch)
rpc <:U rp (Behavioural Subtyping)

override t1 mn (t̄2 x ) [static sp] [reflexive rp] {S; return y} in D

The constructor is a special type of method that initialises the fields of an
object. We use Ccs to denote the constructor for class C. When the subclass’s
constructor is called, by default, the constructor of its superclass is called be-
fore the subclass constructor. As a constructor instantiates a concrete object,
constructors only have a static specification. A concrete object should use static
specifications for further method calls.
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D≺1C spc=static(Ccs) spc=[Pc] [ϵ:Qc]
sp=[P ] [ϵ:Q] Pc ∗ Pf ⊢ P

[P ′]=[ϵ:Qc[this : D/this : C ] ∗ Pf ∗ (∗fi∈field(D) this.fi 7→null)]
[P ′] S [ϵ:Q] (Spec verification)

Dcs (t̄2 x ) [static sp] {S}

To ensure sp meets the precondition for calling the superclass’s constructor, we
do an entailment checking for Pc ∗ Pf ⊢ P : the precondition of the superclass Pc

should entail the precondition of the subclass P with a possible anti-frame Pf
that captures the extra nodes (do not appear in Pc) in the separation formula
P . This anti-frame Pf is carried forward as part of the pre-states for verification.
In addition, all extension fields of class D will be set to null before executing
the constructor body S.

4.3 Proof Rules

This section presents primary proof rules specific to our OO language in Fig. 5.
We leave the remaining standard rules [22,26] in Appendix C.

Rules Read, Write, NullRead and NullWrite are for object access (read-
/write). Programmers typically check object type using instanceof before ap-
plying casting. Rules for instanceof, including InsNull, Ins and DyIns, model
the type checking. While the first two are for objects with static views, the last
one is for objects with dynamic views. Cm represents some classes with fields be-
fore Ci while Ck is for those after Ci. If Ci ≺ C, intanceof operator returns true
and drops all classes before Ci, but keeps the field information (of the dropped
classes) in Ci. Otherwise, it returns false and drops those classes after Ci.

The rules for casting operators are CastNull, CastOk, CastErr, DyCastOk
and DyCastErr. A casting error happens when the type of an object is assigned
to an incompatible type. Note that the casting operation does not change the
type stored in a heap or which method to call. A casting operator applies on a
null value without any exceptions. Upcasting is always successful, as an instance
of the subclass is also an instance of the superclass. Downcasting fails if we cast
an object of exact type C to its subclass D. Casting to an unrelated class will
also lead to an error. Similar to DyIns, rules DyCastOk and DyCastErr are for
objects with dynamic view. If Ci ≺ C, all classes after Ci in a dynamic view
can be cast to C. Otherwise, all classes before Ci in a dynamic view can lead to
casting errors.

Rules for method invocation are Static MethodInv and Dynamic MethodInv.
When an object has an exact type C, we apply its static specification. For the
dynamic method invocation (view(x) = x :: ...D⟨...⟩ means the dynamic view
of object x in the precondition ends with type D), our system extracts reflexive
specs according to the last type of the object’s dynamic view. Note that, a re-
flexive spec may describe more classes than necessary. For instance, the dynamic
view of an object x before a dynamic method invocation is x::D⟨e2⟩E⟨e3⟩. How-
ever, the dynamic view of this object in the precondition of the corresponding
reflexive spec (class E) might be this::C⟨e1⟩D⟨e2⟩E⟨e3⟩. It seems we could not
apply the Dynamic MethodInv rule. In this case, we can use the Constancy rule
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[x.f 7→e ∧ y = y′] y:=x.f [ok: x.f 7→e[y′/y] ∧ y = e[y′/y]]
Read

[x = null] y:=x. [er: x = null]
NullRead

[x.f 7→e] x.f := y [ok: x.f 7→y]
Write

[x=null] x.f :=y [er: x=null]
NullWrite

[x = null ∧ y = y′] y:=x instanceof C [ok: x = null ∧ y = False]
InsNull

Q1 ≡ x : C1 ∧ y = True ∧ C1 ≺ C Q2 ≡ x : C1 ∧ y = False ∧ C1 ̸≺ C

[x : C1 ∧ y = y′] y:=x instanceof C [ok: Qi], i ∈ {1; 2} Ins

Q1 ≡ x :: Ci⟨em, ei⟩Ck ∧ y = True ∧ Ci ≺ C
Q2 ≡ x :: CmCi⟨ei⟩ ∧ y = False ∧ Ci ̸≺ C

[x :: CmCi⟨ei⟩Ck ∧ y = y′] y:=x instanceof C [ok: Q1 ∨Q2]
DyIns

[x = null ∧ y = y′] y:=(C) x [ok: x = null ∧ y = null]
CastNull

[x 7→C1⟨ē⟩ ∧ y = y′ ∧ C1≺C] y:=(C) x [ok: x 7→C1⟨ē[y′/y]⟩ ∧ y = x ∧ C1≺C]
CastOk

[x : C1 ∧ C1 ̸≺ C] y:=(C) x [er: x : C1 ∧ C1 ̸≺ C]
CastErr

Q ≡ x :: (Ci⟨em, ei⟩Ck)[y
′/y] ∧ y = x ∧ Ci ≺ C

[x :: CmCi⟨ei⟩Ck ∧ y = y′] y:=(C) x [ok: Q]
DyCastOk

Q ≡ x :: CmCi⟨ei⟩ ∧ y = y′ ∧ Ci ̸≺ C

[x :: CmCi⟨ei⟩Ck ∧ y = y′] y:=(C) x [er: Q]
DyCastErr

[x = null] x.mn(ȳ) [er: x = null] Null MethodInv

x : C static(C.mn(w̄)) = [Pr] [ϵ:Po] Pr[x, z̄/this, w̄] ⇒ P

[P ∧ y = y′]y = x.mn(z̄)[ϵ:Po[x, z̄, y/this, w̄, ret]]
Static MethodInv

view(x) = x :: ...D⟨...⟩
reflex(D .mn(w̄)) = [Pr] [ϵ:Po] Pr[x, z̄/this, w̄] ⇒ P

[P ∧ y = y′]y = x.mn(z̄)[ϵ:Po[x, z̄, y/this, w̄, ret]]
Dynamic MethodInv

static(C (w̄)) = [Pr] [ϵ:Po] Pr[ȳ/w̄] ⇒ P

[P ∧ x = x′]x:=new C(ȳ)[ϵ:Po[ȳ, x/w̄, this]]
Constructor

Fig. 5. Proof rules

in Appendix C and add a constrain type(this) = {D,E} in the pre/post of the
reflexive spec. Then, we can obtain a spec that can be used for this dynamic
method invocation. Our case studies D utilise this strategy to do the proving.
Constructor is for object constructor and is similar to Static MethodInv. Note
that, all method invocations may need extra efforts for anti-frame inference. As
the precondition P could contain more heap components than Pr for method
calls, we need to infer a formula F where Pr ∗ F ⊢ P and then push F forward
by using the frame rule.

Theorem 1 (Soundness). If ⊢ [P ]S[ϵ:Q], then ⊨ [P ]S[ϵ:Q].

Proof. See Appendix B.
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5 Implementation and Evaluation

Implementation. We prototype our incorrectness verification system for OOP,
OURify, which consists of 10,000 lines of OCaml codes. We discharge the entail-
ment checking and the anti-frame inference using the off-the-shelf tool, SLEEK
[6,13].

OURify is an automated verifier that performs under-approximation compo-
sitional reasoning in a bottom-up manner. Specifically, given a program written
in our core language (shown in Fig. 3) with well-annotated static and reflexive
specifications, OURify verifies (i) the implementation against the static specifi-
cations; and (ii) behaviour subtyping conformance via the proposed subtyping
relation among reflexive specifications. Afterwards, OURify reports the verifica-
tion results, SUCCESS or FAILED, to the user.

OURify implements the proof rules in Fig. 5 and Appendix C, and a proof
search algorithm. The algorithm takes a specification table T , that stores verified
specifications of methods and uses a function post(P, T, S), that computes the
post-states ϵ′: Q′ of command S from its pre-condition P via applying the proof
rules.

Given a method mn with the static specification [P ] [ϵ:Q] and implementa-
tion mc, OURify verifies the specification by first computing a set of post-states
via post(P, T,mc). After that, for each post-state assertion ϵ′ : Q′, it invokes
SLEEK to check whether ϵ′ is the same with ϵ and Q ∗ emp |= Q′. If there
is no post-state that satisfies these checks, OURify returns FAILED. Other-
wise, the static specification [P ] [ϵ:Q] is verified. Theorem 1 ensures the correct-
ness of the function post: [P ] [ϵ:Q | ϵ: Q ∈ post(P, T,mc)]. In addition, OURify
checks the validity of the corresponding reflexive specification according to Def-
inition 2 (specification subtyping between static and reflexive specifications of
the method as well as reflexive specifications between methods of superclasses
and subclasses), with the help of the back-end solver, SLEEK [6,13]. If all checks
are successful, it returns SUCCESS. Otherwise, it produces FAILED.

Evaluation. The implementation is running on a Linux machine with an Intel
i7 processor 3.40GHz and 8 GB of memory. We have tested OURify on programs
with null-pointer-exceptions (NPE) and class-casting-exceptions (CAST) and re-
ported the results in Table 1 while the name with “OK” indicates an ok program.

We have chosen 15 programs as our benchmarks. Six of them are manually
constructed (those with the prefix M). The manually constructed programs are
used to validate our implementation. The rest of the programs are taken from
some existing works and publicly available data set[21,19,28,2,29]. Those pro-
grams have been translated into our core language. We annotate specifications
for each method to capture their functional properties. The benchmarks are col-
lections of commonly occurring bugs from various projects. We keep the crucial
parts for doing the experiments. For instance, we have selected some bench-
marks from Pulse repository [2]. The current version of Pulse does not support
the detection of some OO-related bugs in those benchmarks. We are interested
in those bugs in our system.
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Table 1. Experimental results.

Benchmark LOC TIME(s) LoSpec SUCCESS FAILED

NPE 1 34 0.249 3 3 0

M OK 2 61 0.815 8 6 2

M NPE 3 60 0.811 9 9 0

M CAST 4 79 0.695 13 11 2

M OK 5 80 0.799 7 7 0

NPE 6 80 0.956 8 8 0

NPE 7 150 2.850 28 28 0

NPE 8 167 3.251 22 21 1

CAST 9 187 1.717 18 18 0

M NPE&CAST 10 203 1.801 19 19 0

OK 11 321 5.418 49 43 6

NPE 12 331 4.907 42 38 4

NPE 13 335 5.962 53 53 0

M NPE&CAST 14 524 9.498 84 84 0

NPE 15 709 13.282 99 99 0

Sum 3321 53.011 462 447 15

Table 1 summarises the experimental results. The table records: 1) LOC, the
number of lines of code; 2) TIME, the running time (in seconds); 3) LoSpec, the
number of lines of specifications – one pair of pre/post per line; 4) SUCCESS,
the number of valid triples; and 5) FAILED, the number of invalid triples (all
are false IL triples added to test OURify’s soundness). The experimental results
show that OURify verified all the triples correctly within a short running time
and did not verify a false IL triple. Note that as our approach is compositional,
the verification time increases linearly wrt. the number of specifications.

To demonstrate the practical impact of our proposal, we conduct the second
experiment to reproduce the bugs reported by Pulse, an analyser developed
within the Infer framework to find bugs in products at Meta [1]. Pulse applies
under-approximate bi-abduction to infer static specifications automatically [12].
It reports a bug at a method only when it can derive a manifest er triple e.g.,
the triple is of the form [emp ∧ true] code [er : q], where q is satisfiable.

For this experiment, we take all real-world programs in the above experiment.
For each program, if Pulse reports an NPE bug, we construct corresponding IL
triples, some of them are manifest er triples. If OURify could verify these triples,
we classify the bug as confirmed. Otherwise, if we could not verify manifest er
triples, we write either ok triples or latent er triples (which are er triples but not
in the form of manifest) where OURify can verify them and classify the bug as
unconfirmed. Moreover, we also carefully validated that the ones in confirmed
partition are real bugs and all in unconfirmed one are false positives.

Table 2 presents the experimental results from both tools: 1) OK OR, the
number of ok specifications proved by OURify; 2) Cast OR, the number of error
specifications for casting errors proved by OURify; 3) NPE OR, the number
of error specifications for NPE proved by OURify; 4) Manifest, the number
of manifest bugs (the true bugs, in contrast to latent/possible bugs [12]); 5)
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NPE PS, the number of NPE reported by Pulse; 6) Confirmed, the number of
bugs reported by Pulse and confirmed by OURify; 7) FP PS, the number of
errors reported by Pulse but cannot be confirmed by OURify; and 8) FN PS,
the number of manifest bugs OURify could verify with er triples but Pulse did
not discover.

Table 2. Incorrectness verification by OURify vs. bug finding by Pulse.

Benchmark OK OR Cast OR NPE OR Manifest NPE PS Confirmed FP PS FN PS

NPE 1 1 0 2 1 1 1 0 0

NPE 6 5 0 3 1 0 0 0 1

NPE 7 23 0 5 2 2 2 0 0

NPE 8 17 0 4 3 0 0 0 3

CAST 9 10 8 0 3 0 0 0 3

OK 11 43 0 0 0 0 0 0 0

NPE 12 37 0 1 1 1 0 1 1

NPE 13 40 0 13 12 8 5 3 7

NPE 15 75 0 24 11 9 8 1 3

Sum 251 8 52 34 21 16 5 18

To sum up, there are 34 manifest bugs, including 16 confirmed bugs and
18 false negatives (missed by Pulse), and Pulse also reported 5 false positives.
Interestingly, NPE OR (which is 52) is higher than NPE PS (which is 21) as
NPE OR includes specifications for both latent (may) and manifest (must) bugs
while NPE PS reports manifest bugs only. Furthermore, OURify can prove sev-
eral manifest bugs which Pulse could not discover. (We discuss two case studies
in Appendix D.) Most of these bugs relate to the hierarchical structure of OOP.
For example, Pulse does not report bugs caused by the casting operator. In
some situations, the superclass and the subclass behave differently (methods are
overridden), as a result of which bugs are triggered when methods of the sub-
class are called but not the superclass. Pulse may miss such bugs. Requiring
specification annotation is a drawback of OURify. It limits the applicability of
OURify in large programs. However, writing specifications are always helpful
to the program design. For instance, specifications can be used to support the
regression analysis. Error specifications that are verified indicate the presence of
bugs. They can kept to automatically remind programmers that certain errors
should not re-appear (cannot be verified) when the code is modified in future.
At the current stage, OURify works as a verification tool based on our proof
system. We hope that our proof system could be the foundation for bug-finding
tools, like Pulse, to hunt OO bugs more precisely in real codebases.

6 Related Work and Conclusion

Our work relates to the over-approximating verification for OOP [5,11,24,25].
To verify objects, Kassios [11] introduces a dynamic frame which describes data
separation explicitly and could handle the aliasing problem. However, this work
did not address behavioural subtyping which is essential for OOP. Parkinson and
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Bierman [24] propose the abstract predicate family to handle behavioural subtyp-
ing in separation logic, including a mechanism to capture specifications where
subclasses own more fields than their super-classes. Predicates inside a family
can change the arity freely. Hence, the implication between formulae with differ-
ent heap sizes can be proved through existentially quantified arguments. Later,
two independent papers [5,25] propose the co-existence of static and dynamic
specifications for OOP to uphold the Liskov substitution principle.

Following the landscape of the proposals in separation logic [5,24,25], we in-
troduce the first proof system for under-approximating reasoning over OOP. Sim-
ilar to the abstract predicate family, our dynamic view specifies the behaviours
of multiple objects in a class inheritance relationship. In contrast, while the ab-
stract predicate is a conjunction set (for over-approximation), the dynamic view
is based on disjuncts (i.e., describing a set of objects for under-approximation)
such that it could support instanceof and casting effectively. Furthermore, we
use reflexive specifications to support dynamic dispatching in a modular man-
ner (e.g., avoid re-verification) while the static specification provides a precise
verification for static method calls.

Another essential concept in OOP is class invariant, which describes classes’
functions [9]. Using class invariants helps to achieve more precise analyses in
over-approximately verifying OOP. There are several challenging problems and
solutions for around this concept. For example, Barnett et al. [3] propose a
methodology that can reason about class invariants which could be temporarily
broken while class fields are being updated. They use a special field to explicitly
record if an object’s invariant is valid. Leino and Müller [16] generalise ownership-
based reasoning to support interrelated object invariants. An analogy of class
invariant in IL is beyond this proposal and would be investigated in future.

Under-approximating reasoning in IL helps to avoid false positives which
some static analysis tools are suffering [27]. Like IL, De Vries and Koutavas [30]
proposed the reverse Hoare logic for under-approximation. Incorrectness sep-
aration logic (ISL) [26] enhances the applicability of IL in heap-manipulating
programs. It combines separation logic [23] and IL, which provides the funda-
mental framework for our work. Le et al. [12] bring the ISL theory into practice.
They developed Pulse-X to capture manifest bugs (bugs that will be triggered
regardless of the calling context) in real-world projects. Our work, an IL logic for
OOP, is meant to help build a foundational framework for under-approximating
reasoning that could systematically support bug finding in OOP codebase.

Conclusion. This paper presents a variant of incorrectness separation logic to
show the presence of bugs in Java-like OO programs. In particular, we introduce
the static view and static specification to verify the implementation of a static
method and the dynamic view and reflexive specification to verify behavioural
subtyping. When behavioural subtyping holds, we can avoid costly case anal-
ysis for class objects. The reflexive specification can be further re-used for the
dynamically dispatched method calls. For future work, we plan to extend the
system with the bi-abduction technology to infer specs and automatically find
bugs in real-world OO programs.
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A Semantics

Semantics of our core programs are defined in Fig. 6. Each method call will

JskipKok def
= {((s, h), (s, h))}

Jx:=eKok def
= {((s, h), (s[x7→s(e)], h))}

Jx:=y.fKok def
= {((s, h), (s[x7→v], h))| h.2(s(y), f) = v}

Jx:=y.fKer def
= {((s, h), (s, h))| s(y) = null}

Jx.f :=yKok def
= {((s, h), (s, h′))| h′ = (h.1, h.2[(s(x), f) 7→s(y)])}

Jx.f :=yKer def
= {((s, h), (s, h))| s(x) = null}

Jy:=(C) xKok def
= {((s, h), (s[y 7→ s(x)], h))| (h.1(s(x)) = C1 ∧ C1≺C) ∨ s(x) = null}

Jy:=(C) xKer def
= {((s, h), (s, h))| h.1(s(x)) = C1 ∧ C1 ̸≺C}

JS1; S2Kϵ
def
= {((s, h), (s′, h′))|ϵ = er ∧ ((s, h), (s′, h′)) ∈ JS1Ker

∨ ∃(s′′, h′′). ((s, h), (s′′, h′′)) ∈ JS1Kok ∧ ((s′′, h′′), (s′, h′)) ∈ JS2Kϵ}

Jt x; SKϵ def
= {((s[x7→v], h), (s′[x 7→v], h′))|((s, h), (s′, h′)) ∈ JSKϵ}

Jx.mn(z̄)Kϵ def
= {((s, h), (s′, h′))|(∃s1. ((so[w̄ 7→s(z̄), this 7→ s(x)], h), (s1, h

′)) ∈ JSKok
∧ ((s1, h

′), (s′ = s[ret7→s1(y)], h
′)) ∈ Jreturn yKok)

∨ (∃S′, s1.ϵ = er ∧ ((so[w̄ 7→s(z̄), this 7→ s(x)], h), (s1, h
′)) ∈ JS′Ker ∧ s′ = s)

∨ ((s′, h′) = (s, h) ∧ ϵ = er ∧ s(x) = null)}
provided that h.1(s(x)) = C, body(C.mn(w̄)) = {S; return y};
so is new method stack;

S
′ is a sub-sequence of statements (from beginning) of S

Jreturn yKok def
= {((s, h), (s′, h))|∃s′′. s′ = s′′[ret7→s(y)]}

Jnew C(ȳ)Kϵ def
= {((s, h), (s′, h′))| ∃l. loc(l) /∈ dom(h.1)

∧ l.1(loc(l)) = C ∧ l.2[(loc(l), f) 7→null]∧
((∃s1. ((so[w̄ 7→s(ȳ)], h ⊎ l), (s1, h

′)) ∈ JSKok
∧ ((s1, h

′), (s′ = s[ret7→loc(l)], h′)) ∈ Jreturn loc(l)Kok)
∨ (∃S′, s1.ϵ = er ∧ ((so[w̄ 7→s(ȳ)], h ⊎ l), (s1, h

′)) ∈ JS′Ker) ∧ s′ = s))}
provided that body(C(w̄)) = {S}, S′ is a sub-sequence of S;

loc(l) returns the location of l; so is new method stack

Fig. 6. Semantics of the core OO language.

create a new stack s0 (called method scope) [4] and store the mapping of the
input parameters. A return statement will remove the method scope and return
the value to the original stack. The statement new C(ȳ) instantiates a new object
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JempK def
= {(s, h)| dom(h.1) = ∅ ∧ dom(h.2) = ∅}

Jx.f 7→eK def
= {(s, h)| h.2(s(x), f) = s(e) ∧ dom(h.2) = {(s(x), f)}}

Jx : CK def
= {(s, h)| h.1(s(x)) = C ∧ dom(h.1) = {s(x)}}

Jx7→C⟨e⟩K def
= {(s, h)| h.1(s(x)) = C ∗ ( ∗

fi∈field(C)
h.2(s(x), fi) = s(ei))

∧ dom(h.1) = {s(x)} ∧ dom(h.2) = {(s(x), f)}}

Jx::C⟨e⟩K def
= Jx 7→C⟨e⟩K

Jx::C1⟨e1⟩· · ·Cn−1⟨en−1⟩Cn⟨en⟩K
def
= Jx7→Cn⟨e1, · · ·, en⟩K∨Jx::C1⟨e1⟩ · · ·Cn−1⟨en−1⟩K

Jκ1 ∗ κ2K
def
= {(s, h)| ∃h′, h′′. h.1 = h′.1 • h′′.1 ∧ h.2 = h′.2 • h′′.2

∧ (s, h′) ∈ Jκ1K ∧ (s, h′′) ∈ Jκ2K}

where h′.i • h′′.i
def
=

{
h′.i ⊎ h′′.i if dom(h′.i) ∩ dom(h′′.i) = ∅
undefined otherwise

Fig. 7. Semantics of the assertion language.

on the heap. The constructor is a unique method. At the initial step, a heap l
will be allocated to this object and set all its fields to null . Then, the statements
in the body will be executed like a standard method and implicitly return the
location of l at the end. We assume a reserved variable ret , which captures the
value in a return statement and will be replaced once assigned. For void method,
it returns nothing. The conditional statement can be encoded by assume and
choice S+S [26]. For brevity, we omit the details.

In IL, the abnormal states are captured explicitly. For example, there are
three scenarios causing null-pointer-exceptions including reading or updating
a field from null , cf. Jx:=y.fKer and Jx.f :=yKer respectively. The third case
happens in the static method call, i.e., when the receiver of a method is null .

The semantics of assertions are defined in Fig. 7.

B Soundness

Lemma 2 (soundness of reflexive specification). Suppose we have a class
hierarchy C1, C2...Cn and all the static specifications are sound for the method
mn (no dynamically dispatched method call in the body), i.e. ⊨ [Spri ] Ci.mn [ϵ:Spoi ].
Then, the reflexive spec of mn in Cn is sound, that is ⊨ [Dprn ] x.mn [ϵ:Dpon ]
where x can be one of the type in C1, C2...Cn .

Proof. Suppose the hierarchy only has one class C1, the static specification is just
a subtype specification of the corresponding reflexive specification. By the con-
sequence rule of IL, we have ⊨ [Dpr1 ] x.mn [ϵ:Dpo1 ]. Suppose the hierarchy has i
classes C1, C2...Ci and ⊨ [Dpri−1

] x.mn [ϵ:Dpoi−1
] where the possible types of x

exclude Ci. We have the static specification [Spri ] [ϵ:Spoi ] and the reflexive spec-
ification [Dpri ] [ϵ:Dpoi ] for Ci. According to the requirement of Definition 2, we
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have [Spri ]⊨[Dpri ] and [Dpoi ∧ type(this) ∈ {Ci}]⊨[Spoi ]. By consequence rule,
we have ⊨ [Dpri ] x.mn [Dpoi ∧ type(this) ∈ {Ci}] when the type of x is only Ci.
Similarly, we require [Dpri−1

] [ϵ:Dpoi−1
] <:Ci−1 [Dpri ] [ϵ:Dpoi ]. Then, we have

⊨ [Dpri ] x.mn [Dpoi ∧ type(this) ∈ {Ci−1}] (the type of x is not Ci).
Therefore, by induction, ⊨ [Dprn ] x.mn [ϵ:Dpon ].

Lemma 3 (soundness of axioms). The axioms are true, i.e. they are valid
under the relational denotational semantics.

Proof. Some of the axioms are analogous and follow the same proving idea as
[26]. We shall not repeat them. However, we should focus on instanceof and
casting which are not mentioned anywhere else.

– x instanceof C:
InsNull:
Pick an arbitrary heap h and (spo, hpo) ∈ [ok: x = null ∧ y = false], such
that h#hpo (# means disjoint). By definition, we know that spo(x) = null,
spo(y) = false and dom(hpo) = ∅. Let spr = spo[y 7→y′] for any y′ and
hpr = hpo. By definition (spr, hpr) ∈ [x = null]. Then, it suffices to show
((spr, h ⊎ hpr), (spo, h ⊎ hpo)) ∈ Jy:=x instanceof CKok.

Ins1:
Pick an arbitrary heap h and (spo, hpo) ∈ [ok: x : C1 ∧ y = True ∧ C1≺C]
such that h#hpo. By definition, spo(y) = true and hpo.1(spo(x)) = C1 .
Let spr = spo[y 7→ y′] for any y′ and hpr = hpo. By definition, we know
(spr, hpr) ∈ [x : C1 ∧ y = y′ ∧ C1 ≺ C]. Since h(spo(x)).1 = h(spr(x)).1 =
C1. it suffice to show ((spr, h⊎hpr), (spo, h⊎hpo)) ∈ Jy:=x instanceof CKok.

Ins2:
Pick an arbitrary heap h and (spo, hpo) ∈ [ok: x : C1 ∧ y = false ∧ C1 ̸≺C]
such that h#hpo. By definition, spo(y) = false and hpo.1(spo(x)) = C1

. Let spr = spo[y 7→ y′] for any y′ and hpr = hpo. By definition, we
know (spr, hpr) ∈ [x : C1 ∧ y = y′ ∧ C1 ̸≺C]. It suffice to show ((spr, h ⊎
hpr), (spo, h ⊎ hpo)) ∈ Jy:=x instanceof CKok.

DyIns: When the postcondition is q1, it follows Ins1. When the postcondition
is q2, it follows Ins2.

– y:=C (x):
CastNull:
Pick an arbitrary heap h and (spo, hpo) ∈ [ok: x = null ∧ y = null], such
that h#hpo (# means disjoint). By definition, we know that spo(x) = null,
spo(y) = null and dom(hpo) = ∅. Let spr = spo[y 7→y′] for any y′ and
hpr = hpo. By definition (spr, hpr) ∈ [x = null ∧ y = y′]. Then, it suffices
to show ((spr, h ⊎ hpr), (spo, h ⊎ hpo)) ∈ Jy:= (C) xKok.

CastOk:



24 Wenhua Li, Quang Loc Le, Yahui Song, and Wei-Ngan Chin

Pick an arbitrary heap h and (spo, hpo) ∈ [ok: x7→C1⟨ē⟩[y′/y] ∧ x = y ∧ C1≺C]
such that h#hpo. By definition, spo(x) = l ,spo(x) = spo(y), hpo.1(l) = C1

and hpo.2(l, f) = ē[y′/y]. Let spr = spo[y 7→ spo(y
′)] and hpr = hpo. By def-

inition, we know (spr, hpr) ∈ [x 7→C1⟨ē⟩ ∧ y = y′ ∧ C1≺C]. It suffice to show
((spr, h ⊎ hpr), (spo, h ⊎ hpo)) ∈ J(C2) xKok.

CastErr:
Pick an arbitrary heap h and (spo, hpo) ∈ [er: x : C1 ∧ C1 ̸≺C] such that
h#hpo. By definition, spo(x) = l , hpo.1(l) = C1. Let spr = spo and hpr =
hpo. By definition, we know (spr, hpr) ∈ [x : C1 ∧ C1 ̸≺C]. It suffice to show
((spr, h ⊎ hpr), (spo, h ⊎ hpo)) ∈ Jy := (C) xKerr.

DyCastOk: it follows CastOk.

DyCastErr: it follows CastErr.

– Method call:
Null MethodInv: It directly follows the semantics.

Other rules for method call: The primary axioms can verify the static speci-
fication of methods. By Lemma 2, the corresponding reflexive specifications
are also valid. Hence, our rules Static MethodInv, Dynamic MethodInv and
Constructor are sound (by consequence rule).

C Other proof rules

The rules Skip, Assign and Assume are standard. The rule Choice states that
we can drop one of the branches. For the sequence statement S1;S2 states that
if S1 leads to error states, we can skip the remaining statements. Local handles
local variables with existentially quantified variables.

Skip
[emp] skip [ok: emp]

Assign
[x=x′] x:=e [ok: x=e[x′/x]]

Assume
[emp] assume(B) [ok: B]

[p] Si [ϵ:q] i ∈ {1, 2}
[p] S1 + S2 [ϵ:q]

Choice
[p1] S [ϵ:q1] [p2] S [ϵ:q2]

[p1 ∨ p2] S [ϵ:q1 ∨ q2]
Disj

Seq1
[p] S1 [er: q]

[p] S1; S2 [er: q]

Seq2
[p] S1 [ok: r] [r] S2 [ϵ:q]

[p] S1; S2 [ϵ:q]

Local
[p] S [ϵ:q]

[p] t x; S [ϵ:∃x.q]

Note that the consequence rule can be applied when the precondition is
weakened and the postcondition is strengthened, which is a reversed version of
the consequence rule in over-approximation verification. ISL [26] introduces the
negative heap x ̸7→ to denote a deallocated location. This introduction helps to
retain the soundness of the frame rule for under-approximating analysis. As our
programming language does not contain delete statement (i.e., we do not allow
to explicitly remove objects from the heap), the proposed assertion language does
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not include the negative heap. Alternatively, we use null to mark invalidated
heaps (e.g., uninitialised objects).

Constancy
[p] S [ϵ:q] mod(S) ∩ fv(r)=∅

[p ∧ r] S [ϵ:q ∧ r]

Consequence
p′⇒p [p′] S [ϵ:q′] q⇒q′

[p] S [ϵ:q]

Frame
[p] S [ϵ:q] mod(S) ∩ fv(r)=∅

[p ∗ r] S [ϵ:q ∗ r]

D Case studies

1 class AnInterface {...}
2 class ImpleOne extends AnInterface {...}
3 class ImpleTwo extends AnInterface {...}
4 ...
5 virtual int somevalue(AnInterface i)

6

static [i :: AnInterface⟨⟩ImpleOne⟨⟩]
[ok: ∃impl. i 7→ ImpleOne⟨⟩∧impl = i ∧ ret = ...][er: i 7→ AnInterface⟨⟩]
static [i :: AnInterface⟨⟩ImpleTwo⟨⟩] [er: i :: AnInterface⟨⟩ImpleTwo⟨⟩]
{ImpleOne impl := (ImpleOne) i;

7 return impl.getInt ();}
8

9 virtual int classCastException ()
10 static [true] [er: a 7→ ImpleTwo⟨⟩]
11 {ImpleTwo a := new ImpleTwo ();
12 return somevalue(a);}
13 ...

Fig. 8. Another casting error

Case Study 1: Figure 8 shows a program (simplified) taken from [2]. Two
non-related subclasses ImpleOne and ImpleTwo extend the common superclass
AnInterface respectively. A method somevalue takes an object i of static type
AnInterface as an argument. The method casts i into a subclass ImpleOne and
returns a value by calling its getInt() method. There is a latent bug in this
method as the casting will be successful if the actual type of i is ImpleOne;
otherwise, there will be casting errors. We have two specifications to capture
this scenario (reflexive specifications are omitted):

– i has the dynamic view of AnInterface⟨⟩ImpleOne⟨⟩. The DyCastOk and
DyCastErr will split them into two cases for casting. If i 7→ ImpleOne⟨⟩, the
program will successfully return some value (omitted in the specification). If
i 7→ AnInterface⟨⟩, the program enters an abnormal execution.

– i has the dynamic view of AnInterface⟨⟩ImpleTwo⟨⟩. The DyCastErr di-
rectly concludes that the program enters an abnormal execution after cast-
ing.
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The next method classCastException has a manifest bug, i.e. regardless of the
calling context, the bug will be triggered. The method body instantiates object
a with an allocated type ImpleTwo. Subsequently, call somevalue(a). As the
type of i is not modified in somevalue, we can use Constancy rule to extract a
suitable specification for this call.

[i :: AnInterface⟨⟩ImpleTwo⟨⟩] [er: i :: AnInterface⟨⟩ImpleTwo⟨⟩]
[i :: AnInterface⟨⟩ImpleTwo⟨⟩

∧type(i) = ImpleTwo]
[er: i :: AnInterface⟨⟩ImpleTwo⟨⟩

∧type(i) = ImpleTwo]

[i 7→ ImpleTwo⟨⟩] [er: i 7→ ImpleTwo⟨⟩]

By applying Static MethodInv, we can verify the specification of this method.

Case Study 2: In this case study, we test OURify over a program in which
the subclass is not behavioural subtyping. Fig. 9 shows an example of the radial
subclass.

1 class Super {
2 virtual Object foo()
3 static [this 7→Super⟨⟩] [ok: ∃o. this 7→Super⟨⟩ ∗ o 7→Object⟨⟩ ∧ ret=o]
4 reflex [this::Super⟨⟩] [ok: ∃o. this::Super⟨⟩ ∗ o 7→Object⟨⟩ ∧ ret=o]
5 {Object o := new Object (); return o;}}
6

7 class Sub extends Super {
8 override Object foo()
9 static [this 7→Sub⟨⟩] [ok: this 7→Sub⟨⟩ ∧ ret=null]

10 reflex [this::Super⟨⟩Sub⟨⟩]
[ok: ∃o. this::Super⟨⟩ ∗ o 7→Object⟨⟩ ∧ ret=o][ok: this::Sub⟨⟩ ∧ ret = null]

11 {return null ;}}
12 ...
13 virtual void test(Super a)
14 static [a::Super⟨⟩Sub⟨⟩]
15 [ok: ∃m, o. a::Super⟨⟩ ∗ o 7→Object⟨⟩ ∧m = o]
16 [er: ∃m. a::Sub⟨⟩ ∧m=null]
17 {Object m := a.foo(); m.toString ();}
18

19 virtual void buggy(Sub b)
20 static [b::Sub⟨⟩] [er: b::Sub⟨⟩]
21 {test(b);}
22 ...

Fig. 9. Non-behavioural subclass

The method foo() is overridden in Sub and it is radically different to the one
in Super: It returns null, while Super.foo() returns an Object. The test(Super
a) method makes a dynamic dispatching call of foo and the returned object will
be a caller of toString. As Sub.foo returns null, if the actual type of a is Sub,
null.toString leads an NPE while there will be no error if the actual type of a is
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Super. The buggy(Sub b) calls method test on a Sub object which will lead to
a manifest bug. We note that showing the presence of the bug in this example
is non-trivial. For instance, the program is tested by Pulse but Pulse could not
detect the manifest bug in buggy.

For reflexive specifications, we use a dynamic view to specify Sub.foo()’s
functions. One describes its own function, and the other one is for its superclass.
To prove the implementation against this specification, OURify generates the
following three proof obligations: i) static(Super.foo()) <:U reflex(Super.foo());
ii) static(Sub.foo()) <:U reflex(Sub.foo());
and iii) reflex(Super.foo()) <:U reflex(Sub.foo()) after the verification of static
specifications. The first obligation is straightforward. For the second one, the pre-
conditions checking [this7→Sub⟨⟩]⊨[this::Super⟨⟩Sub⟨⟩] is also trivial. For post-
conditions, after conjoining with type(this) ∈ {Sub}, the first ok postcondition
becomes false and the second ok postcondition trivially implies the postcondi-
tion of the static spec. Similarly, the third proof obligation can be proven by
conjoining type(this) ∈ {Super} with the postcondition of reflex(Sub.foo()).

Now, let us consider the methods test and buggy. We omit the reflexive
specification of the two methods as they are virtual.

The augment a of test has static type Super. Then, the method call foo()
is dynamically dispatched as the actual type of a can be either Super or Sub.
Hence, OURify re-uses the reflexive specification for foo() in Sub. By applying
our Dynamic MethodInv rule, we reach two possible intermediate states:

[ok: ∃o. a::Super⟨⟩ ∗ o 7→Object⟨⟩ ∧m = o] (1)

[ok: a::Sub⟨⟩ ∧m=null] (2)

OURify analyses the two states separately. For state (1), this method will ter-
minate normally (for simplicity, we assume toString() method has no effect on
states). However, in the state (2), the method call toString() leads to an error
post-state as m = null (Null MethodInv rule).

The buggy method has a manifest bug, because it runs the method test
only with a Sub object. To verify this method, OURify re-uses the specification
of test. Similar to case study one, by applying Constancy rule, OURify can
conjoin type(a) = Sub (as the type a is not modified) with the pre/post of test
to extract the following specification:

[a::Sub⟨⟩] [er: ∃m. a::Sub⟨⟩ ∧m=null]

This specification is subsequently used for the method call test(b). By applying
the Static MethodInv rule and Consequence rule, OURify verifies the er specifi-
cation of buggy.
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