
Incorrectness Proofs for Object-Oriented
Programs via Subclass Reflection

Wenhua Li1, Quang Loc Le2, Yahui Song1, Wei-Ngan Chin1

1 National University of Singapore, Singapore
2 University College London, United Kingdom

Over-approximating reasoning
• Hoare Logic (Hoare triple):

• Prove the correctness of programs.
• Q over-approximates post(c)P
• Program behaviours are bounded by this triple.

Over-approximating reasoning

• Hoare Logic is imprecise for capturing bugs in programs

Under-approximating reasoning
• Incorrectness Logic (a dual theory of Hoare Logic)

Hoare triple:

Under-approximating reasoning
• Incorrectness Logic (a dual theory of Hoare Logic)

• Dropping paths are allowed
• Every state in Q is a reachable state from some states in P

Incorrectness logic

• A formal foundation for bug finding
• Incorrectness logic has been practically used for bug detection.
• Pulse-X: an analyser based on Incorrectness Logic. It found 15 bugs which

were unknown previously in OpenSSL.
• Pulse: a commercial version.

Finding real bugs in big programs with incorrectness logic. Le et al., OOPSLA 2022

Incorrectness logic for OO programs
• Method calls in OOP:

• The current approaches only support calls where where the called methods are determined statically.

• Features like Class inheritance, casting, and dynamic dispatching in OOP have not been studied yet.

• Many works have been done for correctness reasoning in OOP (e.g., Superclass abstraction, Class
Invariant). There is no theoretical foundation for proving incorrectness in OOP.

Contributions

• Specification mechanism: a pair of specifications for each method.
• Static specification: capturing the functional properties of a single class.
• Reflexive specification: under-approximating the behaviours for one class and

its superclasses (subclass reflection).

• Under-approximating proof system: verify the specifications.

• OURify (OO program Under-approximation Verifier) : an
implementation which supports automated verification of
specifications.

Illustrative example

• Cnt: tick() method increase val by 1

• DblCnt extends Cnt: tick() method stores
the previous value of val in bak and non-
deterministically increases val by 1 or 2

Illustrative example

• Static spec for Cnt.tick():

• Static spec for DblCnt.tick():

• Can be used for calls like:

• Can we efficiently reason about the following call?

Illustrative example

• OOP design should adhere to Liskov
substitution principle (behavioural
subtyping): An object of a subclass can
always replace an object of the superclass
without causing problems.

• Based on LSP, we observe that a
behavioural subtype should reflect the
reachable states of its superclasses.

Illustrative example

• We propose dynamic view to encode multiple classes
(disjuncts) simultaneously.

 =

• The disjuncts can be merged iff the subclasses
maintain the states for fields inherited from the
superclasses

• Dynamic view: used in reflexive specs to support
dynamic dispatching calls.

Illustrative example
• As Cnt has no superclass, its reflexive specs only

reflects itself

• DblCnt needs to reflect itself and Cnt

• The disjunct for else branch has been dropped
here.

• We could also capture the else branch by using:

Illustrative example

Dynamic dispatching call

A casting error

Verification of static specification
• Perform IL-style forward verification using the proof rules.

Verification of reflexive specification

• Perform specification subtyping checking

• This relation is a corollary of IL consequence rule and the frame rule of Separation Logic.

• Given a method mn for superclass C and for subclass D and the relation
holds, every program satisfying will satisfy

• The reflexive specs are validated without verifying against method bodies.

Verification for OOP methods

Implementation and Evaluation
• OURify consists 10,000 lines of OCaml codes.
• Benchmarks are manually constructed or selected from public dataset. We only keep the crucial parts

OURify and Pulse
• Pulse is unable to report some bugs that are manifests, but these bugs can be verified in OURify.
• Pulse does not detect casting errors but OURify supports casting operator reasoning.

Limitations and future directions
• We support automated verification of specification, but

specifications need to be provided. Hence, the bug
detection is not fully automated.

• One can apply bi-abduction based on our proof system to
infer specifications automatically.

• An analogy of class invariant in Incorrectness Logic is yet
to be discovered/designed. We think class (in)variant
might advance incorrectness reasoning.

Summary
• Specification mechanism: a pair of specifications for each

method.

• Under-approximating proof system: verify the
specifications.

• OURify: can prove specifications automatically, some of
which are not detectable by the state-of-the-art tool.

