Incorrectness Proofs for Object-Oriented
Programs via Subclass Reflection

Wenhua Li, Quang Loc Le?, Yahui Song!, Wei-Ngan Chint
1 National University of Singapore, Singapore

2 University College London, United Kingdom

N U S A
% National University m
of Singapore

Over-approximating reasoning

* Hoare Logic (Hoare triple):

{P;c{Q} iff post(c)P C Q

For all states s in P, if running c on s terminates in ', then s’ is in Q.

* Prove the correctness of programs.
* Q over-approximates post(c)P
* Program behaviours are bounded by this triple.

Over-approximating reasoning

* Hoare Logic is imprecise for capturing bugs in programs

/ AK\\
> y . . \\\
~~ Approximation \
of behaviors N
false positive

true positive

Actual program
- behaviors

Under-approximating reasoning

* Incorrectness Logic (a dual theory of Hoare Logic)

Hoare triple:

{P}c{Q} iff post(c)P C Q J

Q over-approximates post(c)P

Under-approximate triple:

[P]c[Q] iff post(c)P 2 Q J

For all states s in Q, s can be reached by running ¢ on some s’ in P.

Q under-approximates post(c)P

Incorrectness Logic. Peter O’Hearn. POPL 2020

Under-approximating reasoning

* Incorrectness Logic (a dual theory of Hoare Logic)

Incorrectness triple

[Plcle: Q]
e exit condition

® [ok: normal execution]
@ [er: erroneous execution]

* Dropping paths are allowed
* Every state in Q is a reachable state from some states in P

Incorrectness Logic. Peter O’Hearn. POPL 2020

Incorrectness logic

* A formal foundation for bug finding

* Incorrectness logic has been practically used for bug detection.

* Pulse-X: an analyser based on Incorrectness Logic. It found 15 bugs which
were unknown previously in OpenSSL.
]) true positive

e Pulse: a commercial version. {

@

Approximation
of behaviors

Actual program
behaviors

Finding real bugs in big programs with incorrectness logic. Le et al., OOPSLA 2022

Incorrectness logic for OO programs

Method calls in OOP:

£0) { f(SomeClass a) {
SomeClass a = new SomeClass(...); a mth()
a.mth(...);

y b

The current approaches only support calls where where the called methods are determined statically.
Features like Class inheritance, casting, and dynamic dispatching in OOP have not been studied yet.

Many works have been done for correctness reasoning in OOP (e.g., Superclass abstraction, Class
Invariant). There is no theoretical foundation for proving incorrectness in OOP.

Contributions

 Specification mechanism: a pair of specifications for each method.
* Static specification: capturing the functional properties of a single class.

* Reflexive specification: under-approximating the behaviours for one class and
its superclasses (subclass reflection).

* Under-approximating proof system: verify the specifications.

* OURIfy (OO program Under-approximation Verifier) : an
implementation which supports automated verification of
specifications.

lllustrative example

e Cnt: tick() method increase val by 1

e DbICnt extends Cnt: tick() method stores
the previous value of val in bak and non-
deterministically increases val by 1 or 2

> W N =

© (0] ~ (o)) ot

10

11

12

class Cnt {
int val;
void tick ()
{this.val

this.val+1;}}

class DblCnt extends Cnt{

int bak;

override void tick()

{this.bak

this.val;

if (*) super.tick();

else
this.val

this.val+2;}}

[

lllustrative example 2
e Static spec for Cnt.tick(): ;

[this::Cnt(v)] tick() [ok: this:Cnt(v + 1)] 12
» Static spec for DbICnt.tick(): 1;

[this::DblCnt(v, b)] tick() [ok: this:DblCnt(v',v) A v+1<v'<v+2]

e (Can be used for calls like:

Cnt a = new Cnt(...); ... a.tick();
DblCnt a = new BblCnt(...); ... a.tick();

e Can we efficiently reason about the following call?

f(Cnt a) {...a.tick();...}

class Cnt {
int val;
void tick()
{this.val := this.val+1;}}

class DblCnt extends Cnt({
int bak;
override void tick()
{this.bak := this.val;
if (*) super.tick();
else
this.val := this.val+2;}}

lllustrative example

OOP design should adhere to Liskov
substitution principle (behavioural
subtyping): An object of a subclass can
always replace an object of the superclass
without causing problems.

Based on LSP, we observe that a
behavioural subtype should reflect the
reachable states of its superclasses.

11

12

class Cnt {
int val;
void tick ()
{this.val

this.val+1;}}

class DblCnt extends Cnt({

int bak;

override void tick()

{this.bak

this.val;

if (*) super.tick();

else
this.val

this.val+2;}}

lllustrative example

* We propose dynamic view to encode multiple classes
(disjuncts) simultaneously.

this::Cnt(v)DblCnt(b)
= this::Cnt(v) V this::DblCnt(v,b)
e The disjuncts can be merged iff the subclasses

maintain the states for fields inherited from the
superclasses

 Dynamic view: used in reflexive specs to support
dynamic dispatching calls.

(o} = W V)

© oo ~ (o)}

10

11

12

class Cnt {
int val;
void tick ()
{this.val := this.val+1;}}

class DblCnt extends Cnt({
int bak;
override void tick()
{this.bak := this.val;
if (%) super.tick();
else
this.val := this.val+2;}}

lllustrative example 3

* As Cnt has no superclass, its reflexive specs only
reflects itself

static/reflex [this::Cnt(v)| tick() [ok: this:Cnt(v + 1)] ®

* DblICnt needs to reflect itself and Cnt 0

11
static [this::DblCnt(v,b)] tick() [ok: this:DblCnt (v, v) A v+1<v'<v+2]

reflex [this::Cnt(v)DblCnt(b)] tick() [ok: this::Cnt(v+1)DblCnt(v)]

* The disjunct for else branch has been dropped
here.

* We could also capture the else branch by using:
[this::Cnt(v)DblCnt(b)]- [ok: this::DblCnt(v+2,v)]

class Cnt {
int val;
void tick()
{this.val := this.val+1;}}

class DblCnt extends Cnt({
int bak;
override void tick()
{this.bak := this.val;
if (*) super.tick();
else
this.val := this.val+2;}}

lllustrative example

void goo(Cnt x) {...
[z::Cnt (v)Db1Cnt(b)]
x.tick();

lok: z::Cnt(v + 1)DblCnt(v)]
y := (DblCnt) x;
[ok: z::DblCnt(v + 1,v) Ay =]

ler: z::Cnt({v + 1)]
ued \ A casting error

Dynamic dispatching call

0 ~ (&)} o e W N —

Verification of static specification

e Perform IL-style forward verification using the proof rules.

Read

[z.fe Ny =y y:=x.f [ok: z.fely’ [yl ANy = e[y /]
NullRead

[x =null] y:=z._ [er: z = null]

[z.fr>e] z.f:=y [ok: z.f—y] Wit [z=null] z.f:=y [er: z=null] Null¥rite

InsNull

[z =null Ay = y'] y:=z instanceof C [ok: z = null Ay = False]
Qi=z:Ciny=TruenCi < C Qe=z:CiNy=False N\C1 £C
[x: Ci Ay =1y'] y:=z instanceof C [ok: Q;], ¢ € {1;2}
Qi=z:Ci(em,€)Cc Ny= True ANC; < C
Q2=z: CnCi(e;) Ny = False NC; £ C
[z :: CnCi(€;)Cr Ny = y'] y:=z instanceof C [ok: Q1 V Q2]

Ins

DylIns

[f=mullAy=y] y=(C) T [ok: = null Ay — null] CastNull

[z—C1(e) Ny =y’ A C1=<C] y:=(C) z [ok: z—C1{ely’/y]) Ny =z A C1<C] e

CastErr

[:C1ACL £Cly:=(C) z [er: z: C1 ANC1 £ C]

Q=z: (Cilem,&)Cu)ly' /Yl N\y=2zAC; < C

[z :: CrCi(€)Cr ANy = y'] y:=(C) z [ok: Q]
Q=z:CCiE)Ny=y ANC; £C

[z :: CnCi(€)Crk Ny = '] y:=(C) z [er: Q]

[z = null] z.mn(g) [er: z = null] Null MethodInv

z:C static(C.mn(®@)) = [Pr]-[e:Po] Pr(z, Z/this,w] = P
[P Ay =y']ly = z.mn(Z)[e:Polz, Z,y/this, w, ret]]

DyCastOk

DyCastErr

Static MethodInv

view(z) =z :: ...D(...)
reflex(D.mn(@)) = [Pr|_[e:Po] Pr(z, zZ/this, W] = P
[P Ay =y'ly = xz.mn(Z)[e:Po[z, Z,y/this, 0, ret]]
static(C(w)) = [Pr]-[e:Po] Prly/w]= P
[P Az =z'|z:=new C(g)[e:Po[g, z/w, this]]

Dynamic MethodInv

Constructor

Verification of reflexive specification

The reflexive specs are validated without verifying against method bodies.

e Perform specification subtyping checking

Qp Ntype(this) € Tc = Qc*xF FxPc | Pp
[Pc] - [eQc] <:w [Pp] - QD]

* This relation is a corollary of IL consequence rule and the frame rule of Separation Logic.

« Given [Pc] - [e:Qc] for superclass C and [Pp] - [e:Qp]| for subclass D and the relation
holds, every program satisfying [Pc| - [e:Qc] will satisfy ' [Pp] _ [e:Q D]

Verification for OOP methods

sp=|P] [e:Q)]
[P] S;return y [e:Q)] (Spec verification)

virtual t; mn (€5 T) [static sp| [reflexive sp] {S;return y} in C

D<1C sp.=static(C.mn) rp.=reflex(C.mn) sp.=sp.[this: D/this: C]

Compatible(sp., sp) (Spec verification)
sp <!y rp (Dynamic Dispatch)
rpe <:y rp (Behavioural subtyping)

inherit t1 mn (T, T) [static sp] [reflexive rp| {} in D

D<,C rp.=reflex(C.mn) sp=[P]-le:Q]
[P] S;return y [e:Q)] (Spec verification)
sp <:y Ip (Dynamic Dispatch)
rp. <:U rp (Behavioural Subtyping)

override ty mn (To T) [static sp| [reflexive rp] {S;return y} in D

Implementation and Evaluation

* OURIify consists 10,000 lines of OCaml codes.
* Benchmarks are manually constructed or selected from public dataset. We only keep the crucial parts

Benchmark LOC TIME(s) LoSpec SUCCESS | FAILED
NPE_1 34 0.249 3 3 0
M_OK_2 61 0.815 8 6 2
M_NPE_3 60 0.811 9 9 0
M_CAST 4 79 0.695 13 11 2
M_OK.5 80 0.799 7 7 0
NPE_6 80 0.956 8 8 0
NPE_7 150 2.850 28 28 0
NPE_8 167 3.251 22 21 1
CAST9 187 1.717 18 18 0
M_NPE&CAST 10 203 1.801 19 19 0
OK_11 321 5.418 49 43 6
NPE_12 331 4.907 42 38 1
NPE_13 335 5.962 53 53 0
M_NPE&CAST 14 524 9.498 84 84 0
NPE_15 709 13.282 99 99 0
Sum 3321 53.011 462 447 15

OURIfy and Pulse

* Pulse is unable to report some bugs that are manifests, but these bugs can be verified in OURify.
* Pulse does not detect casting errors but OURIify supports casting operator reasoning.

Benchmark|OK_OR|Cast_OR|NPE_OR |Manifest| NPE_PS|Confirmed|FP_PS{FN_PS
NPE_1 1 0 2 1 1 1 0 0
NPE_6 5 0 3 1 0 0 0 1
NPE_7 23 0 5 2 2 2 0 0
NPE_S8 17 0 4 3 0 0 0 3
CAST.9 10 8 0 3 0 0 0 3
OK_11 43 0 0 0 0 0 0 0
NPE_12 37 0 1 1 1 0 1 1
NPE_13 40 0 13 12 8 5 3 7
NPE_15 75 0 24 11 9 8 1 3
Sum 251 8 52 34 21 16 5 18

Limitations and future directions

 We support automated verification of specification, but
specifications need to be provided. Hence, the bug
detection is not fully automated.

* One can apply bi-abduction based on our proof system to
infer specifications automatically.

* An analogy of class invariant in Incorrectness Logic is yet
to be discovered/designed. We think class (in)variant
might advance incorrectness reasoning.

Summary

e Specification mechanism: a pair of specifications for each
method.

 Under-approximating proof system: verify the
specifications.

* OURIfy: can prove specifications automatically, some of
which are not detectable by the state-of-the-art tool.

