NUS

National University
of Singapore

Automated Temporal Verification for

Algebraic Effects

Yahui Song, Darius Foo, Chin Wei Ngan

National University of Singapore

5th Dec 2022 @ APLAS 2022 in Auckland, New Zealand

Scan Me For the
Project Repository

Algebraic Effects

(* Spawn binary tree of tasks in depth-first order

skok ok ok sk sk sk sk ok ok ok 5k
Fiber tree
skok ok sk sk ok sk sk ok sk sk 5k

%)

let rec f id depth =
if depth > @ then begin
fork (fun () => f (id * 2 + 1) (depth - 1));
fork (fun () -=> f (id * 2 + 2) (depth - 1))
end else begin
yield ()
end

let () = run (fun () -=> f @ 2)

* User-defined computational effects and handlers
* Enables many language features (previously
considered primitive) to be provided as libraries,

usable in direct style!

o Exceptions, generators, cooperative concurrency,

asynchronous 1/0O, coroutines, nondeterminism

Example taken from https://qgithub.com/ocaml-multicore/effects-examples

https://github.com/ocaml-multicore/effects-examples

User-defined Effects and Handlers

effect E : string

let comp () =
print_string "0 ";
print_string (perform E);
print_string "3 "

let main () =
try
comp ()
with effect E k —>
print_string "1 “;
continue k "2 ";
print_string “4 "

Example taken from “Effect Handlers in Multicore OCaml” slides by KC Sivaramakrishnan.

User-defined Effects and Handlers

Thisprints:0 1 2 3 4

EFTECtREN string

"’///f/ comp () =

effect declaration print_string "@ ": >
print_string (perform E)
print_string "3 "

return type of perform

suspends current
computation

-t main ()/computation

comp () J— _, delimited continuation

effect E k =
print_string "1 " _—— handler

continue k "2 "

resume suspended «—print_string “4 "
computation -

Example taken from “Effect Handlers in Multicore OCaml” slides by KC Sivaramakrishnan.

Challenges

* Nonlocal control flow is hard to reason about

* Can a given effect occur? Are all effects handled? = effect system

fun
fun
fun
fun
fun

le

sqr

divide :
turing :

print
rand

(* will this be executed?)

t main () =

bar ();
(int) —> total int
(int,int) -> exn int
(tape) —> div int
(string) —> console ()
() —> ndet int

// total: mathematical total function

// exn: may raise an exception (partial)
/I div: may not terminate (diverge)

// console: may write to the console

// ndet: non-deterministic

Examples taken from https://koka-lang.github.io/koka/doc/book.htmI#why-effects

https://koka-lang.github.io/koka/doc/book.html

Challenges

* Nonlocal control flow is hard to reason about

* Can a given effect occur? Are all effects handled? = effect system

* In what order are effects allowed to occur?

let main n =
close_file n;
open_file n

Challenges

* Nonlocal control flow is hard to reason about

* Can a given effect occur? Are all effects handled? = effect system

* In what order are effects allowed to occur?

* Can the use of higher-order functions with deep handlers lead to

nontermination?

N O ook~ W

0o

effect Foo (unit -> unit)

let £() = perform Foo ()

let loop()

= match £ () with

| _ =-> () (*normal returnx)

| effect Foo k -> continue k
(fun () -> perform Foo ())

type 'a page = Page of 'a * (unit -> 'a page)

effect Request : int -> (string list) page

let client () =
let Page (results, next)

let database client =
match client () with
| () => () ces
| effect (Request n) k —> let Page (results, next)
let results = ... in
continue k (Page (results,

fun () -> perform (Request (n + size))))

get 10 in

next () in

Challenges

* Nonlocal control flow is hard to reason about

* Multishot continuations are hard to use correctly
* Many interesting use cases: nondeterminism, memoization, probabilistic programming
* Does not mix well with imperative code, resources, linear continuations

* “A separation logic for effect handlers” (POPL 2021) — focuses on zero-/one-shot

effect Choose : bool
let choose () = perform Choose

let main () =
bar_multishot ();

. (% how many times will this be executed?)
let all results m =

match m () with

| v => [v]

| effect Choose k —>
(continue k true) @ (continue (Obj.clone_continuation k) false)

. (x 1if we don't know, we can't close files, mutate variables etc. *)

Challenges

* Nonlocal control flow is hard to reason about
* Multishot continuations are hard to use correctly

* Modularity
* We would like specify programs modularly, e.g. at function boundaries
* However, reasoning about an effectful program can only be fully done when its

interpretation (handler) is known

let g () =
if choose ()
then print_string "1"
else print_string "2"
(x could print any of: nothing, 1, 2, 12, 112, 121, ... *)

Challenges

1. Modularity

2. Multishot continuations

3. Nonlocal control flow

Contributions

1. A program logic with compositional
temporal specifications, which
handler reasoning uses

2. Coexistence of zero-shot, one-shot
and multi-shot continuations

3. Fixpoint reasoning for some cases

of deep handler nontermination

Verification Overview

Higher-order Program with Effects Two ContEffs
& Temporal Specification LHS C RHS

Hoare-style Proof Obligations Effects Inclusion
Forward Verifier |~~~ ~ 7 Prover (TRS) Sec. 5

Specification Language ContEffs for sets of allowed traces

Hoare-style forward verification, targeting an ML-like core language A,

 Compositionally infers temporal behaviors of program via a set of forward rules

* Fixpoint calculator to check for potential nontermination

Term Rewriting System (TRS) checks entailments between ContEffs

We prove soundness of the forward verifier and termination of the TRS

Core Language A, : pure, higher-order, call by value

(Values) vi=cl|lz|Adx=>e
(Expressions) e =v|vv2 | let x=v in e | if v then e else ez |
perform A(v, \x = e) | match e with h | resume v

Specification Language ContEffs:

(ContEffs) @ == \/(m,6,v)
(Parameterized Label) | = X(v)
(Event Sequences) 0 == 1L |e|ev| Q|0:02]|6:VO02 |0 |0 |6%
(Single Events) ev == _|1|1l —

(Placeholders) @ == 11| 1?(v)

w

N

© 00 g O o

10

11

12

Motivating Example

effect Open : int -> unit
effect Close: int -> unit

let open_file n

(¥@ req _"* Q%)

(¥@ ens Open(n)! Q%)
= perform (Open n)

let close_file n
(¥@ req
(*@ ens Close(n)! @x*)
= perform (Close n)

_"x.0pen(n)!.("Close(n)!) "%

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

let file_9 ()
(¥@ req emp Qx)
(¥@ ens Open(9)!. Close(9)!.Close(9)! @%*)

open_file 9;
close_file 9;
close_file 9;

let main
(¥@ req emp Q%)

(x@ ens Open(9)

.("Close(9)) "*.Close(9) @x*)

match file_9 () with

- > 0

effect (Open n) k -> continue k ()

effect (Close n) k

-> continue k ()

Examples — One-shot continuations

1 effect Foo : (unit -> unit)
effect Goo : (unit -> unit)

2
3
4 let £ ()
5 (%@ req emp Q*) —
6 (*x@ ens |Foo!.Goo!.Goo?().Foo?7()
7 = let x = perform Foo in
Ty = et o ﬂ
2 y O 3 Foo! Goo! - Goo?() - Foo?() - v ¥ = (fun x -> x)
10 x O
2 Foo Goo! Goo?() - Foo?() - v Foo? = (fun () -> ()
1; 188 HEandlar 3 Foo - Goo Goo?() Foo?()- v Goo? = (fun () -> ())
13 (%@ req emp @x) 4 Foo - Goo - emp Foo?() v
14 (*Q@ ens |Foo.Goo|@%) 5 Foo-Goo-emp-emp ¥ -

15 = match £ () Wi;h\Final Foo - Goo -

16 | x -> x
17 | effect Foo k -> continue k (fun () -> ()
|

18 effect Goo k -> continue k (fun () -> (O))

Examples — Zero-shot continuations (Exceptions)

1 effect Exc : (unit -> unit)

> effect Other : (unit -> unit)

3

4 let £ ()

5 (@ req emp Q%) _—

6 (*@ ens|Exc!.0Other!.0ther?() .Exc?() |@%*)
7 = let x = perform Exc in

8 let y = perform Other in

9

y () ’ History Current Continuation Bindings
16 X () Event

11 1 emp Exc! Other! - Other?() - Exc?() - v v = (fun x -> x)
12 Jlet handler 2 Exc - - No “Continue”
13 (*¥@ req emp Q%) __ Final Exc

14 (%@ ens| Exc [@x%)
15 = match f () with
16 | x -> x

| effect Exc k ->| ()

LT

Examples — Multi-shot continuation

1 effect Foo : (unit -> int)

> effect Goo : (unit -> int)

3 effect Done: (unit)

4

5 let £ ()

6 (*¥@ req emp Q%)

7 (*@ ens Foo!.Goo!.Goo?7() . .Foo?7() @x)
8 = let x = perform Foo in

9 let y = perform Goo in

10 y();X()

11
12 let handler

13 (*@ req emp Q%)

14 (*¥@ ens |Foo.Goo.Done!.

15 Goo .Done! |@%*)

16 = match f () with

17 | x -> |perform Done;

18 | effect Foo k ->|continue k (fun () -> (0));
19 continue k (fun () -> ())

20 | effect Goo k -> continue k (fun () -> ())

Examples — Multi-shot continuation

m
Event

Foo! Goo! - Goo?() - Foo?() - = (fun x -> perform Done)
2 Foo Goo! Goo?() - Foo?() - ¥ - Goo! - Goo?() - Foo?() - ¥ Foo? = (fun () -> ())
3 Foo - Goo Goo?() Foo?() - v - Goo! - Goo?() - Foo?() - v Goo? = (fun () -> ())
4 Foo - Goo Foo?() v - Goo! - Goo?() - Foo?() - v
5 Foo - Goo v Goo! - Goo?() - Foo?() - »
6 Foo - Goo - Done! Goo! Goo?() - Foo?() - v
7 Foo - Goo - Done! - Goo Goo?() Foo?() - v
8 Foo - Goo - Done! - Goo - emp Foo?() v
9 Foo - Goo - Done! - Goo - emp - emp v -
10 Foo - Goo - Done! - Goo - emp - emp - Done! - -

Final Foo - Goo - Done! - Goo - Done! - -

Examples — Non-terminating Fixpoint

1 effect Foo : (unit -> unit)
> effect Goo : (unit -> unit)
3
4 let £ ()

(*@ req emp Q)

(¥*@ ens|Foo!.Foo?()| @x*)

= let x = perform Foo in

© 0w N O O

10

11

12

13

14

15

16

17

x ()

1 emp Fool!

Foo?()

let handler

(¥@ req emp @Qx) C

(¥*@ ens |Foo~"w |@x*) _
match f () with Final Foo - Foo®

| x -> x
|

effect Foo k ->

Foo?() - ¥

v

Foo! - Foo?() - v

Reoccurrence!

continue k

(fun

Q)

-> perform Foo ())

| effect Goo k ->

O

m
Event

¥ = (fun x -> x)

Foo? = (fun () -> perform Foo ())

Implementation and Evaluation
e Core implementation: ~ 2500 LOC in OCaml, on top of Multicore OCaml (4.12.0)

 Validation: manually annotated synthetic test cases marked with expected outputs

No.|LOC Infer(ms) #Prop(v') Avg-Prove(ms) #Prop(X) Avg-Dis(ms)
1 32 [14.128 5) 7.7786 5) 6.2852
2 48 14.307 5 7.969 5) 6.5982
3 71 15.029 5 7.922 5) 6.4344
4 98 |14.889 5 18.457 5) 7.9562
5) 156 |14.677 7 10.080 7 4.819
6 197 |15.471 7 8.3127 7 6.8101
7 240 |18.798 7 18.559 7 7.468
8 285 120.406 7 23.3934 7 9.9086
9 343 |26.514 9 16.5666 9 13.9667
10 401 |26.893 9 18.3899 9 10.2169
11 |583 [49.931 14 17.203 15 10.4443
12 |808 | 75.707 25 21.6795 24 16.9064

Scan Me For the
Project Repository

Conclusion and Future Work
Thanks!

* New approach for verifying Algebraic Effects

* Syntax and semantics of ContEffs

 Automated Hoare-style forward verification + fixpoint computation

* Prototype system: experimental results and case studies

* Modular temporal specifications

e Coexistence of zero-shot, one-shot and multi-shot continuations

* Detecting nontermination due to deep handlers + higher-order

* TODO: Extend the ContEffs logic with mutable heap states Scan Me For the
Project Repository

