
Automated Temporal Verification for

Algebraic Effects

Yahui Song, Darius Foo, Chin Wei Ngan

National University of Singapore

5th Dec 2022 @ APLAS 2022 in Auckland, New Zealand

Scan Me For the
Project Repository

Algebraic Effects

• User-defined computa(onal effects and handlers

• Enables many language features (previously

considered primiMve) to be provided as libraries,

usable in direct style!
o Excep&ons, generators, coopera&ve concurrency,

asynchronous I/O, corou&nes, nondeterminism

Example taken from https://github.com/ocaml-multicore/effects-examples

https://github.com/ocaml-multicore/effects-examples

User-defined Effects and Handlers

Example taken from “Effect Handlers in Multicore OCaml” slides by KC Sivaramakrishnan.

User-defined Effects and Handlers

Example taken from “Effect Handlers in Multicore OCaml” slides by KC Sivaramakrishnan.

This prints: 0 1 2 3 4
return type of perform

• Nonlocal control flow is hard to reason about

• Can a given effect occur? Are all effects handled? ⟹ effect system

Challenges

Examples taken from https://koka-lang.github.io/koka/doc/book.html#why-effects

https://koka-lang.github.io/koka/doc/book.html

• Nonlocal control flow is hard to reason about

• Can a given effect occur? Are all effects handled? ⟹ effect system

• In what order are effects allowed to occur?

Challenges

• Nonlocal control flow is hard to reason about

• Can a given effect occur? Are all effects handled? ⟹ effect system

• In what order are effects allowed to occur?

• Can the use of higher-order functions with deep handlers lead to

nontermination?

Challenges

• Nonlocal control flow is hard to reason about

• Multishot continuations are hard to use correctly
• Many interesting use cases: nondeterminism, memoization, probabilistic programming

• Does not mix well with imperative code, resources, linear continuations

• “A separation logic for effect handlers” (POPL 2021) – focuses on zero-/one-shot

Challenges

• Nonlocal control flow is hard to reason about

• Multishot continuations are hard to use correctly

• Modularity
• We would like specify programs modularly, e.g. at function boundaries

• However, reasoning about an effectful program can only be fully done when its

interpretation (handler) is known

Challenges

1. A program logic with composi<onal

temporal specifica<ons, which

handler reasoning uses

2. Coexistence of zero-shot, one-shot

and mul<-shot con<nua<ons

3. Fixpoint reasoning for some cases

of deep handler nontermina<on

1. Modularity

2. Multishot continuations

3. Nonlocal control flow

ContributionsChallenges

Verification Overview

• Specification Language ContEffs for sets of allowed traces

• Hoare-style forward verification, targeting an ML-like core language λh
• Compositionally infers temporal behaviors of program via a set of forward rules

• Fixpoint calculator to check for potential nontermination

• Term Rewriting System (TRS) checks entailments between ContEffs

• We prove soundness of the forward verifier and termination of the TRS

Core Language λh: pure, higher-order, call by value

Specifica:on Language ContEffs:

Motivating Example

Examples – One-shot continuations

Step History Current
Event

Continuation Bindings

1 emp Foo! Goo! · Goo?() · Foo?() · ♥ ♥ = (fun x -> x)

2 Foo Goo! Goo?() · Foo?() · ♥ Foo? = (fun () -> ())

3 Foo · Goo Goo?() Foo?() · ♥ Goo? = (fun () -> ())

4 Foo · Goo · emp Foo?() ♥

5 Foo · Goo · emp · emp ♥ -

Final Foo · Goo - -

Examples – Zero-shot continuations (Exceptions)

Step History Current
Event

Continuation Bindings

1 emp Exc! Other! · Other?() · Exc?() · ♥ ♥ = (fun x -> x)

2 Exc - - No “Continue”

Final Exc - -

Examples – Multi-shot continuation

Step History Current
Event

Continuation Bindings

1 emp Foo! Goo! · Goo?() · Foo?() · ♥ ♥ = (fun x -> perform Done)

2 Foo Goo! Goo?() · Foo?() · ♥ · Goo! · Goo?() · Foo?() · ♥ Foo? = (fun () -> ())

3 Foo · Goo Goo?() Foo?() · ♥ · Goo! · Goo?() · Foo?() · ♥ Goo? = (fun () -> ())

4 Foo · Goo Foo?() ♥ · Goo! · Goo?() · Foo?() · ♥

5 Foo · Goo ♥ Goo! · Goo?() · Foo?() · ♥

6 Foo · Goo · Done! Goo! Goo?() · Foo?() · ♥

7 Foo · Goo · Done! · Goo Goo?() Foo?() · ♥

8 Foo · Goo · Done! · Goo · emp Foo?() ♥

9 Foo · Goo · Done! · Goo · emp · emp ♥ -

10 Foo · Goo · Done! · Goo · emp · emp · Done! - -

Final Foo · Goo · Done! · Goo · Done! - -

Examples – Multi-shot continuation

Examples – Non-terminating Fixpoint

Step History Current
Event

Continuation Bindings

1 emp Foo! Foo?() · ♥ ♥ = (fun x -> x)

2 Foo Foo?() ♥ Foo? = (fun () -> perform Foo ())

Foo! · Foo?() · ♥

Final Foo · Foow - -

Reoccurrence!

Implementation and Evaluation
• Core implementation: ~ 2500 LOC in OCaml, on top of Multicore OCaml (4.12.0)

• Validation: manually annotated synthetic test cases marked with expected outputs

Scan Me For the
Project Repository

Conclusion and Future Work
• New approach for verifying Algebraic Effects

• Syntax and semantics of ContEffs

• Automated Hoare-style forward verification + fixpoint computation

• Prototype system: experimental results and case studies

• Modular temporal specifications

• Coexistence of zero-shot, one-shot and multi-shot continuations

• Detecting nontermination due to deep handlers + higher-order

• TODO: Extend the ContEffs logic with mutable heap states

Thanks!

Scan Me For the
Project Repository

