
Yahui Song and Wei-Ngan Chin

School of Computing, NUS

@ICFEM2020, 2nd March 2021

Automated Temporal Verification of

Integrated Dependent Effects

Yahui Song and Wei-Ngan Chin

School of Computing, NUS

@ICFEM2020, 2nd March 2021

Automated Temporal Verification of

Integrated Dependent Effects

Temporal Effects (Regular Expressions)

send n =

if n == 0 then event [Done];

else event [Send]; send (n - 1);

Temporal Effects (Regular Expressions)

send n =

if n == 0 then event [Done];

else event [Send]; send (n - 1);

𝚽’ = (Send* ・ Done, Sendω) [Martain 2014]

Temporal Effects (Regular Expressions)

send n =

if n == 0 then event [Done];

else event [Send]; send (n - 1);

𝚽’ = (Send* ・ Done, Sendω) [Martain 2014]

𝚽’’ = (Sendn・ Done, Sendω) [Yoji 2018]

Temporal Effects (Regular Expressions)

send n =

if n == 0 then event [Done];

else event [Send]; send (n - 1);

𝚽’ = (Send* ・ Done, Sendω) [Martain 2014]

𝚽’’ = (Sendn・ Done, Sendω) [Yoji 2018]

𝚽pre = True ∧ Ready ・ _*

𝚽post(n) = (n ≥ 0 ∧ Sendn・ Done) ∨ (n < 0 ∧ Sendω)

Temporal Effects (Regular Expressions)

send n =

if n == 0 then event [Done];

else event [Send]; send (n - 1);

𝚽’ = (Send* ・ Done, Sendω) [Martain 2014]

𝚽’’ = (Sendn・ Done, Sendω) [Yoji 2018]

𝚽pre = True ∧ Ready ・ _*

𝚽post(n) = (n ≥ 0 ∧ Sendn・ Done) ∨ (n < 0 ∧ Sendω)

𝚽then = n = 0 ∧ Done

𝚽else = n /= 0 ∧ Send・𝚽post (n-1)

𝚽if-else = 𝚽then ∨ 𝚽else

Temporal Effects (Regular Expressions)

send n =

if n == 0 then event [Done];

else event [Send]; send (n - 1);

𝚽’ = (Send* ・ Done, Sendω) [Martain 2014]

𝚽’’ = (Sendn・ Done, Sendω) [Yoji 2018]

𝚽pre = True ∧ Ready ・ _*

𝚽post(n) = (n ≥ 0 ∧ Sendn・ Done) ∨ (n < 0 ∧ Sendω)

𝚽then = n = 0 ∧ Done

𝚽else = n /= 0 ∧ Send・𝚽post (n-1)

𝚽if-else = 𝚽then ∨ 𝚽else

(n = 0 ∧ Done) ∨ (n > 0 ∧ Send・Sendn-1 ・Done) ∨ (n < 0 ∧ Sendω)⊑ (n ≥ 0 ∧ Sendn・Done) ∨ (n < 0 ∧ Sendω)

Goal: 𝚽if-else ⊑ 𝚽post(n)

Temporal Effects (Regular Expressions)

send n =

if n == 0 then event [Done];

else event [Send]; send (n - 1);

𝚽’ = (Send* ・ Done, Sendω) [Martain 2014]

𝚽’’ = (Sendn・ Done, Sendω) [Yoji 2018]

𝚽pre = True ∧ Ready ・ _*

𝚽post(n) = (n ≥ 0 ∧ Sendn・ Done) ∨ (n < 0 ∧ Sendω)

𝚽then = n = 0 ∧ Done

𝚽else = n /= 0 ∧ Send・𝚽post (n-1)

𝚽if-else = 𝚽then ∨ 𝚽else

Goal: 𝚽if-else ⊑ 𝚽post(n)

ØMix Finite & Infinite traces

ØBranching Properties

(n = 0 ∧ Done) ∨ (n > 0 ∧ Send・Sendn-1 ・Done) ∨ (n < 0 ∧ Sendω)⊑ (n ≥ 0 ∧ Sendn・Done) ∨ (n < 0 ∧ Sendω)

Regular Expressions Containment Problem

A : a finite set of alphabet

E = 𝝓 | emp | a | E ∨ E | E・E

For r, s ∊ E, to check if r ≤ s is valid
Symbolic decision procedure

i.e. a term rewriting system (TRS)

Translation of r, s into DFA/ NFA
(gives rise to an exponential blow-up)

Regular Expressions Containment Problem

Translation of r, s into DFA/ NFA
(gives rise to an exponential blow-up)

A : a finite set of alphabet

E = 𝝓 | emp | a | E ∨ E | E・E

For r, s ∊ E, to check if r ≤ s is valid

PSPA
CE-co

mplete

(The worse-case complexity is still exponential)

Symbolic decision procedure
i.e. a term rewriting system (TRS)

Regular Expressions Containment Problem

Translation of r, s into DFA/ NFA
(gives rise to an exponential blow-up)

A : a finite set of alphabet

E = 𝝓 | emp | a | E ∨ E | E・E

For r, s ∊ E, to check if r ≤ s is valid

PSPA
CE-co

mplete

(The worse-case complexity is still exponential)

Goal: 𝚽if-else ⊑ 𝚽post(n)

ØMix Finite & Infinite traces

ØBranching Properties

Symbolic decision procedure
i.e. a term rewriting system (TRS)

Overview (1)

• Specify the temporal properties into the pre/post condition.

The Effects Logic – as the specification language

Overview (1)

• Specify the temporal properties into the pre/post condition.

The Effects Logic – as the specification language

Overview (2)
The Forward Verifier –
To accumulate the effects

Overview (2)
The Forward Verifier –
To accumulate the effects

Add the events
into the effect state

Overview (2)
The Forward Verifier –
To accumulate the effects

Add the events
into the effect state

Check if the current effect
satisfies the callee’s precondition

Overview (2)
The Forward Verifier –
To accumulate the effects

Add the events
into the effect state

Check if the current effect
satisfies the callee’s precondition

Checks if the final effects satisfy
the program’s postcondition

Overview (3)
Term Rewriting System –
the Effects inclusion checker

Send・ Sendn-1 ⊑ Sendn

n > 0 ∧ Sendn-1 ⊑ Sendn-1

[Unfold with Send]

s = n-1 ∧ s >= 0 ∧ Sends ⊑ Sends

[Substitution]

[Case Split]
s > 0 ∧ Sends ⊑ Sendss = 0 ∧ emp ⊑ emp

[Prove-Frame with Residue = emp]
[Unfold with Send]

s > 0 ∧ Sends-1 ⊑ Sends-1

[Prove-Reoccur]

Cyclic Proof
Succeed!

Implementation and Evaluation

• An open-sourced prototype system using Ocaml.

• Benchmark: 16 IOT programs implemented in C for Arduino controlling

programs:

Øderive temporal properties (in total 235 properties with 124 valid and 111 invalid)

Øexpress these properties using both LTL formulae and our effects,

Øwe record the total computation time using PAT and our TRS.

Implementation and Evaluation

• An open-sourced prototype system using Ocaml.

• Benchmark: 16 IOT programs implemented in C for Arduino controlling

programs:

Øderive temporal properties (in total 235 properties with 124 valid and 111 invalid)

Øexpress these properties using both LTL formulae and our effects,

Øwe record the total computation time using PAT and our TRS.

Implementation and Evaluation

• An open-sourced prototype system using Ocaml.

• Benchmark: 16 IOT programs implemented in C for Arduino controlling

programs:

Øderive temporal properties (in total 235 properties with 124 valid and 111 invalid)

Øexpress these properties using both LTL formulae and our effects,

Øwe record the total computation time using PAT and our TRS.

Implementation and Evaluation (Insights)

• When the transition states of the models are small, the average execution time
spent by the TRS is even less than the NFAs construction time, which means it is
not necessary to construct the NFAs when a TRS solves it faster;

• When the total states become larger, on average, the TRS outperforms automata-

based algorithms, due to the significantly reduced search branches provided by
the normalization lemmas; and

• For the invalid cases, the TRS disproves them earlier without constructing the
whole NFAs.

Summary

• Integrated Dependent Effects: We define the syntax and semantics of the logic.

• Automated Verification System: Targeting C programs we develop:

1) Front-end: a Hoare-style forward verifier; and

2) Back-end: an effects inclusion checker (the TRS).

• A prototype system of the novel effects logic: Proven to be sound, with

experimental results and case studies to show the feasibility.

Summary Thanks a lot for
your attention!

• Integrated Dependent Effects: We define the syntax and semantics of the logic.

• Automated Verification System: Targeting C programs we develop:

1) Front-end: a Hoare-style forward verifier; and

2) Back-end: an effects inclusion checker (the TRS).

• A prototype system of the novel effects logic: Proven to be sound, with

experimental results and case studies to show the feasibility.

