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Add the events 
into the effect state

Check if the current effect
satisfies the callee’s precondition

Checks if the final effects satisfy 
the program’s postcondition 



Overview (3) 
Term Rewriting System –
the Effects inclusion checker

Send・ Sendn-1    ⊑ Sendn

n > 0 ∧ Sendn-1 ⊑ Sendn-1

[Unfold with Send]

s = n-1 ∧ s >= 0 ∧ Sends    ⊑ Sends

[Substitution]

[Case Split]
s > 0 ∧ Sends    ⊑ Sendss = 0  ∧ emp ⊑ emp

[Prove-Frame with Residue = emp]
[Unfold with Send]

s > 0 ∧ Sends-1  ⊑ Sends-1

[Prove-Reoccur]

Cyclic Proof
Succeed!
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• An open-sourced prototype system using Ocaml.

• Benchmark: 16 IOT programs implemented in C for Arduino controlling 

programs: 

Øderive temporal properties (in total 235 properties with 124 valid and 111 invalid)

Øexpress these properties using both LTL formulae and our effects, 

Øwe record the total computation time using PAT and our TRS. 
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Implementation and Evaluation (Insights)

• When the transition states of the models are small, the average execution time 
spent by the TRS is even less than the NFAs construction time, which means it is 
not necessary to construct the NFAs when a TRS solves it faster; 

• When the total states become larger, on average, the TRS outperforms automata-

based algorithms, due to the significantly reduced search branches provided by 
the normalization lemmas; and 

• For the invalid cases, the TRS disproves them earlier without constructing the 
whole NFAs. 



Summary

• Integrated Dependent Effects: We define the syntax and semantics of the logic. 

• Automated Verification System: Targeting C programs we develop:

1) Front-end: a Hoare-style forward verifier; and 

2) Back-end: an effects inclusion checker (the TRS).

• A prototype system of the novel effects logic: Proven to be sound, with 

experimental results and case studies to show the feasibility. 
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