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Programming with user-defined effects and effect handlers has many practical use cases involving imperative

effects. Additionally, it is natural and powerful to use multi-shot effect handlers for non-deterministic or

probabilistic programs that allow backtracking to compute a comprehensive outcome. Existing works for

verifying effect handlers are restricted in one of three ways: i) permitting multi-shot continuations under

pure setting; ii) allowing heap manipulation for only one-shot continuations; or iii) allowing multi-shot

continuations with heap-manipulation but under a restricted frame rule.

This work proposes a novel calculus called Effectful Specification Logic (ESL) to support unrestricted effect

handlers, where zero-/one-/multi-shot continuations can co-exist with imperative effects and higher-order

constructs. ESL captures behaviors in stages, and provides precise models to support invoked effects, handlers

and continuations. To show its feasibility, we prototype an automated verification system for this novel

specification logic, prove its soundness, report on useful case studies, and present experimental results. With

this proposal, we have provided an extended specification logic that is capable of modeling arbitrary imperative

higher-order programs with algebraic effects and continuation-enabled handlers.
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1 Introduction

User-defined effects and effect handlers are a modular approach for delimited control. They offer
the ability to suspend and resume computations, allowing information to be transmitted both ways.
More specifically, an effect handler resembles an exception handler, i.e., control is transferred to an
enclosing handler when performing an effect. Unlike exception handlers, each effect handler has
access to its delimited continuation. By invoking this continuation, the handler can communicate a
reply to the suspended computation before resuming its execution.

Designs for effect handler implementations [Bauer and Pretnar 2015; Leijen 2014; Phipps-Costin
et al. 2023; Sivaramakrishnan et al. 2021], applications [Kawahara and Kameyama 2020; Leijen 2017;
Nguyen et al. 2022], and verification solutions [de Vilhena and Pottier 2021; Song et al. 2022; Timany
and Birkedal 2019] diverge upon whether it should be permitted or forbidden to invoke a captured
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1 effect Label: int

2 (* User -defined effect , which will be resumed with int values *)

3

4 let callee () : int

5 = let x = ref 0 in (* initialize x to zero *)

6 let ret = perform Label in (* the handler has no access to x *)

7 x := !x + 1; (* increment x from zero to one *)

8 assert (!x = 1); (* x now contains one *)

9 ret + 2 (* return the resumed value + 2 *)

Fig. 1. Introductory Example, adapted from de Vilhena and Po�ier [2021].

continuation more than once. Existing works for verifying effect handlers with resources fall into
one of three categories: deal with multi-shot continuations only in a pure setting [Kawamata
et al. 2024; Song et al. 2022]; reason about heap-manipulating behaviors for exclusively one-shot
continuations in Hazel [de Vilhena and Pottier 2021]; or allowing multi-shot continuations with
heap-manipulation but under a restricted frame rule in Maze [de Vilhena 2022].
To verify unrestricted heap-manipulating behaviors with algebraic effects, one key difficulty is

highlighted by de Vilhena and Pottier [2021] that “With the traditional separation logic, allowing
continuations to be invoked more than once breaks certain fundamental laws of reasoning about
programs”. In short, if a continuation can be resumed twice, then a code block can be entered once
and exited twice, which was regarded as problematic, as illustrated by an OCaml example in Fig. 1.
The program defines an effect Label of integer type, indicating that when resumed, its handler
should provide an integer value. Function callee initializes a pointer x with 0 and performs Label
on line 6. The code after line 6 essentially forms the “continuation of performing Label”. Finally, the
program returns the resumed value ret plus 2. So far, nothing is known about the handler for Label,
and we observe different behaviors of callee depending on the specific handler:

• Zero-shot handlers abandon the continuation completely, just like exception handlers;
• One-shot handlers resume the continuation once, and the assertion on line 8 must succeed;
• Multi-shot handlers resume the continuation more than once, so x could be incremented multiple
times; thus, the assertion on line 8 would fail for all but first invocation of the continuation.

To reason about such programs, we propose a novel Effectful Specification Logic (ESL) that offers
new logic constructs for both effect invocations and their unrestricted handlers, where imperative
effects and zero-/one-/multi-shot continuations can co-exist. Our effectful specifications extend
pre/post specifications by explicitly supporting: effects as uninterpreted relations, try-catch handlers
as reducible logic constructs, delimited continuations as lambda-bound relations; and interspersing
these with pre/post summaries that may appear before and/or after these logic constructs.

callee(rc) = ∃x · ens x ↦→0 ; // Line 5

∃ret · Label(ret) ; // Line 6

∃z · req x ↦→z ∧ z+1=1 ens[rc] x ↦→z+1 ∧ rc=(ret+2) // Lines 7-9

Fig. 2. ESL Specification for callee.

A precise ESL specification for callee is shown in Fig. 2 using three stages that are separated by
logical construct ‘;’ to capture computational sequencing. The first stage for Line 5 captures the
spec of code fragment (let x = ref 0 in [.]) where [.] denotes the next evaluation context. We
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shall use the notation code :: sp to associate each code fragment with its specification. Thus:

(let x = ref 0 in [.]) :: ∃x · ens x ↦→0

Here, the specification at this stage indicates that a heap memory location (represented by a points-
to x ↦→0 of separation logic [Calcagno et al. 2009]) will be created by the code fragment. Also, local
variables are existentially quantified using ∃ x · P whose scope may extend past P to the end of
method’s specification. Line 6 captures the invoked effect Label, as denoted by:

(let ret = perform Label in [.]) :: ∃ret · Label(ret)

Here, Label(ret) denotes an algebraic effect invocation. Each algebraic effect is denoted by an
uninterpreted relation E(v∗, r), with arguments v∗ and result r . The interpretation of such effects
would come from concrete handlers that catches these effects (elaborated later in Sec. 2).

Lines 7-9 summarize the continuation code after Label via a pair of pre/post with assertion on
Line 8 captured by the precondition (z+1=1). Using [rc] to capture the result of some post-state,
we can thus model this last specification stage precisely using:

(x:=!x+1; assert (!x=1); ret+2) :: ∃z · req x ↦→z ∧ z+1=1 ens[rc] x ↦→z+1 ∧ rc=(ret+2)

It is also possible to use over-approximation to obtain simpler specifications, where helpful. For
example, if the outcome of callee need not be tracked, we can over-approximate the last stage with:

(x:=!x+1; assert (!x=1); ret+2) :: ∃z · req x ↦→z ∧ z+1=1 ens[rc] x ↦→z+1

ESL specification is generally more complex than say two-stage pre/post specifications since it
allows us to model program codes with algebraic effects more precisely via multiple stages. One
key benefit of ESL is its ability to delay the interpretation for algebraic effect to callers’ sites where
try-catch handlers’ specifications and scope of continuation become known.

2 Main Contributions

10 let zero_shot () : int

11 (* zero_shot (rz) = ∃x · ens[rz] x ↦→0 ∧ rz=-1 *)

12 = match callee () with

13 | effect Label k -> -1

Fig. 3. A Zero-Shot Handler with its Spec.

With callee(rc) defined, we next write
ESL specifications for different and representa-
tive (zero-/one-/multi-shot) handlers, in Fig. 3,
Fig. 4, and Fig. 5, respectively. For simplicity,
when handlers’ normal-return clauses are iden-
tity functions, i.e., (| x -> x), we omit them.
To model effect handlers precisely, we em-

ploy a new logic construct: try (Φ) catch {pati→Φi}
n
i=1, as a logical counterpart of the match-with

statement – where Φ is the specification of the try block, and each pair {pati→Φi} denotes the
specification of each handling case. Our algebraic effect handling constructs are always verified
modularly, in that each handler declaration is only verified once, and each effect invocation can
always be replaced by its already verified handling logic. For convenience, we shall use a context
notation Φ[r] where r explictly identifies the final result of specification Φ. Also, Φ[_] is a short-
hand for (∃r ·Φ[r]). As an example, the specification for zero_shot could be initially modeled as
shown below before it is reduced to its counterpart without the try-catch logic construct:

zero_shot (rz) = try (∃A · callee(r)) catch { !014; : → ens[rz] rz=-1 }
❀

∗ ∃x · ens[rz] x ↦→0 ∧ rz=-1

When suitably instantiated1, each instance of a try-catch logical construct is reducible to a
simpler specification without it. For zero_shot (rz), it is reducible to just a pre/post specification, as

1An example that is not suitably instantiated will be highlighted later in Sec 3.3.
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shown above. To reason about the behavior of a handler, we utilize the code specification (callee(r)
in this case) to obtain the stages up to the invoked effect that we are able to handle, namely:

∃x, ret · ens x ↦→0 ; Label(ret)

and leave the remaining stages to be the specification for the continuation, binding it to k:

k = _(inp, rk)→ ∃z · req x ↦→z ∧ z+1=1 ens[rk] x ↦→z+1 ∧ rk=(inp + 2).

For zero_shot, the continuation was never invoked and its match handler simply returned res=-1
as specified, together with heap state x ↦→0 constructed earlier. Returning to one_shot shown in
Fig. 4, its specification can be constructed and reduced as follows:

one_shot (ro) = try callee(_) catch {Label k→ k(3, ro)}

❀
∗ ∃x · ens[ro] x ↦→1 ∧ ro=5.

The continuation call (resume k 3) is initially modelled as an uninterpreted relation k(3, ro)

that is subsequently interpreted by the handler that catches the Label effect. Here, we could simplify
one_shot’s specification to just a pre/post specification, which results in the heap location x being
updated to 1 after the precondition ∃z · req x ↦→z ∧ z+1=1 is successfully checked.

14 let one_shot () : int

15 (* one_shot (ro) = ∃x · ens[ro] x ↦→1 ∧ ro=5 *)

16 = match callee () with

17 | effect Label k -> resume k 3

Fig. 4. A One-Shot Handler with its Spec.

18 let multi_shot () : int

19 (* multi_shot (rm) = req false *)

20 = match callee () with

21 | effect Label k ->

22 let _ = resume k 4 in resume k 5

Fig. 5. A Multi-Shot Handler with its Spec.

Lastly, we construct the specification for the multi_shot function (in Fig. 5) as follows:

multi_shot (rm) = try callee(_) catch {Label k→ k(4, _) ; k(5, rm)} ❀
∗ req false

The specification for multi_shot is reduced to a false precondition, because the second time that
continuation resume would violate its precondition ∃z · req x ↦→z∧z+1=1, since the heap state
after the first time continuation invocation would be x ↦→1. As a result, the only safe specification
is req false, which forbids this function from ever being (safely) called. As an alternative scenario,
the verification of multi_shot would have succeeded if the assertion in callee were weakened from
(!x=1) to (!x≥1). Under this weaker check, the ESL specification for weak_callee would have been:

weak_callee(rc) = ∃x · ens x ↦→0 ; ∃ret · Label(ret) ; // Lines 5-6

∃z · req x ↦→z ∧ z+1≥1 ens[rc] x ↦→z+1 ∧ rc=(ret+2) // Lines 7-9

With this change, our reasoning would simplify the specification for the multi_shot function to
its expected outcome: (∃x · ens[rm] x ↦→2 ∧ rm=7). This is possible since the preconditions can now
be successfully checked for both continuation calls, k(4, _) and k(5, rm), with the heap location x

incremented twice before the result rm=7 of the second k call be successfully returned.
We have briefly shown here that sound reasoning is achievable with the help of our new logic

constructs for effect invocations and try-catch handling. One inherent limitation of the previous
solution is its reliance on a Player-Opponent protocol logic tomodel code leading to the continuation
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call in the handler as communication between programs and handlers via send/receive commands,
and to use another sequence of ghost instructions in reverse-mode [de Vilhena and Pottier 2023] to
model the code after the continuation call in the handler [de Vilhena 2022; de Vilhena and Pottier
2021]. In contrast, ESL captures behavior in stages, partitioned by invoked effects, which allows
continuations to be captured and manipulated symbolically and in a delimited fashion. This allows
us to model algebraic effects abstractly and provides a more precise and modular mechanism for
effect handlers without imposing some restrictions on them.

Although simple, these examples show the capabilities of our proposal: i) ESL allows assertions
to materialize as heap-based pre-conditions of captured continuations, lending itself to verifying
heap-manipulating multi-shot continuations; ii) ESL naturally models unhandled effects as a relation
between input(s) and an output, which is paired with a corresponding outer handler; and iii) we
extend automated verification for multi-shot ceffect handlers and heap-manipulating continuations,
which cannot be verified by the current state-of-the-art systems. Our contributions are:

(1) Effectful Specification Logic: We define the syntax and semantics of ESL, which captures
staged specifications of heap-operations and assertions, explicitly revealing unhandled effects
together with novel try-catch handlers that are usually reducible.

(2) Hoare-style Verifier: Targeting an ML-like language with both imperative higher-order fea-
tures and algebraic effects, we establish forward rules to compositionally summarize and verify
programs’ behaviors. The verification utilizes a back-end entailment checker for ESL.

(3) The Back-end Checker for ESL: Our back-end checker proves/disproves the entailments
between two normalized ESL formulae. We achieve this with the help of a set of normalization
rules and a reduction process for try-catch logic constructs, where possible.

(4) Implementation and Evaluation: We prototype our proposed verifier, prove its correctness,
report on experimental results, and present various case studies investigating ESL’s capabilities.
Our target programs and our implementation are both written in Multicore OCaml.

3 Illustrative Examples

This section presents a few non-trivial examples to show the core idea and benefits of our approach.

3.1 Passing Pointers with an Effect Invocation

1 effect E: (int ref * int ref) -> unit

2

3 let two_pointers ()

4 (* two_pointers(r) = ∃i, j, ret · ens i ↦→0 ∗ j ↦→0 ; E(8, 9, ret);
∃x, y · req i ↦→x ∗ j ↦→y ens[r] i ↦→x+1 ∗ j ↦→y+1∧r=() *)

5 = let i = ref 0 in

6 let j = ref 0 in

7 let ret = perform E (i, j) in

8 i := !i + 1;

9 j := !j + 1

Fig. 6. Two Pointers with an Effect Invocation.

Consider the example in Fig. 6,
which manipulates two pointers.
Line 7 invokes effect E with pointer
references i and j as arguments.
Then by line 8, we have lost the in-
formation on the concrete values of
i and j, because the handler could
modify their contents. Although
simple, this example shows why
traditional pre/post specifications
cannot handle such complex con-
trol mechanisms. Our proposed ESL
resolves the issue by allowing a
new stage after performing E(i,j,ret) which uses two existential variables x and y to denote the val-
ues of i and j, at the resumed point (Line 8). Moreover, this program may have multi-shot handlers,
and at each resumption, x and y will be replaced by fresh variables. From another perspective,
ESL essentially takes “invoking effects” and “resuming continuations” as function calls to support
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modular verification via staged specifications. This paper shows how to soundly compose such
specification stages during both forward reasoning and try-catch reduction.

3.2 Multi-Shot Handler with an Imperative Counter

1 effect Flip : bool

2

3 let tossN n

4 (* tossN (n, res) = ∃r0 · ens n=1; Flip(r0); ens[res] res=r0 ∨
. ∃r1 · ens n>1 ; Flip(A1);∃r2 · tossN (=-1, A2); ens[res] res=(r1∧r2) *)

5 = match n with

6 | 1 -> perform Flip

7 | n -> let r1 = perform Flip in

8 let r2 = tossN (n-1) in r1 && r2

9

10 let all_results counter n

11 (* all_results(n, r) = ∃z · req counter ↦→ z ∧ n>0 ens[r] counter ↦→ z+(2n+1-2) ∧ r=1 *)

12 = match tossN n with

13 | x -> if x then 1 else 0

14 | effect Flip k ->

15 counter := !counter + 1; (* increase the counter *)

16 let res1 = resume k true in (* resume with true *)

17 counter := !counter + 1; (* increase the counter *)

18 let res2 = resume k false in (* resume with false *)

19 res1 + res2 (* gather the results *)

Fig. 7. Flipping a Coin n-times.

Fig. 7 presents a multi-shot handler for a backtracking computation and increases a mutable
counter whenever the continuation is resumed. Such uses of multi-shot continuations can be found
in search problems [de Vilhena 2022], and simulation for probabilistic programs [Nguyen et al.
2022]. We now show that ESL is able to safely verify mutable states with multi-shot continuations.

The tossN function takes an argument n, invokes the effect Flip n times, and recursively computes
a boolean conjunction of all the resumed results. When handling Flip, from line 15, the handler
resumes the execution twice, with values true and false respectively, and before each resumption,
it increases the counter by 1. As the specification for function all_results shows, given the input
counter originally points to z and n greater than 0, our verifier proves that counter points to
(z+2n+1-2) by the end of the execution and the return value is always 1. For example, taking
counter ↦→0 and n=2 as a concrete state when executing all_results, the counter will be indeed

HΦ = {G→∃r · ens[r] (G∧r=1) ∨ (¬G∧r=0) ,

Flip():→∃z1, r1 · req counter ↦→z1 ens counter ↦→z1+1 ; : (true, r1) ;

∃z2, r2 · req counter ↦→z2 ens counter ↦→z2+1 ; : (false, r2) ; ens[r] r=r1+r2}

Φinv (=, acc, r) = ∃w · req counter ↦→ w ens[r] counter ↦→w+(2n+1-2) ∧ (acc∧r=1∨¬acc∧r=0)

try ∃res · tossN (n, res) # ∃r · ens[r] (acc∧res)∧r=1 ∨ ¬(acc∧res)∧r=0 catchHΦ ⊑ ∃r ·Φinv (=, acc, A )

Fig. 8. A Try-Catch Lemma Deployed (highlighted in gray ), and its Definition.
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updated to 6, i.e., 0+22+1-2, since the first Flip increments counter by two and explores both the
true and false possibilities. For each of these two possibilities, a subsequent Flip in the continuation
will each explore two more possibilities; hence, in total, counter will be increased six times. As for
the return value, it represents the times when all the flips are true; hence, it is always 1.
To symbolically prove all_results’s specification, our verifier summarises the specifications for

the handler cases using HΦ. Due to the use of recursion, our verifier uses lemmas that could be
inductively proven. For this example, we first specify the lemma in Fig. 8. We use the # operator to
mean that the flows after # had already been handed by the handler, which is explained in detail in
Sec. 5.2. This lemma captures the behavior of a try-catch construct using a one stage summary, i,e.,
Φinv (=, acc, A ). In particular, r denotes the integer outcome returned by the normal clause, and the
formula “# (∃r · ens[r] · · ·)” captures a continuation occurring after the tossN (n, res) call.

try ∃res · tossN (n, res) # ∃r · ens[r] (acc∧res)∧r=1 ∨ ¬(acc∧res)∧r=0 catchHΦ (When n=1)

❀ try ∃res · ens n=1 ; Flip (res) # ∃r · ens[r ] (acc∧res)∧r=1 ∨ ¬(acc∧res)∧r=0 catchHΦ [R-Eff -Handle]

❀ ens n=1; ∃w1 · req counter ↦→w1 ens counter ↦→w1+1 ; ∃r
′
1 · ens[r

′
1 ] (acc∧true∧r

′
1=1 ∨ ¬(acc∧true)∧r′1=0) ;

∃w2 · req counter ↦→w2 ens counter ↦→w2+1 ; ∃r
′
2 · ens[r

′
2 ] (acc∧false∧r

′
2=1 ∨ ¬(acc∧false)∧r′2=0) ;

∃r · ens[r ] r=r′1+r
′
2

❀ ∃r,w · req counter ↦→w ens[r ] counter ↦→w+2 ∧ n=1 ∧ (acc∧r=1 ∨ ¬acc∧r=0) ⊑ ∃r ·Φinv (1, acc, A )

try ∃res · tossN (n, res) # ∃r · ens[r] (acc∧res)∧r=1 ∨ ¬(acc∧res)∧r=0 catchHΦ (When n>1)

❀ try ∃r1 · ens n>1; Flip (A1) ;

∃r2 · tossN (=-1, A2) # ∃r · ens[r ] (acc∧r1∧r2)∧r=1 ∨ ¬(acc∧r1∧r2)∧r=0 catchHΦ [R-Lemma-App]

❀ try ∃r1 · ens n>1; Flip (A1) # ∃r · Φinv (=-1, acc∧A1, A ) catchHΦ [R-Eff -Handle]

❀ ens n>1; ∃w1 · req counter ↦→w1 ens counter ↦→w1+1 ; ∃r
′
1 ·Φinv (=-1, acc∧true, A

′
1
) ;

∃w2 · req counter ↦→w2 ens counter ↦→w2+1 ; ∃r
′
2 · Φinv (=-1, acc∧false, A

′
2
) ;

∃r · ens[r ] r=r′1+r
′
2

❀ ∃r,w · req counter ↦→w ens[r ] counter ↦→w+1+(2n-2)+1+(2n-2) ∧ n>1 ∧ (acc∧r=1 ∨ ¬acc∧r=0)

❀ ∃r,w · req counter ↦→w ens[r ] counter ↦→w+(2n+1-2) ∧ n>1 ∧ (acc∧r=1 ∨ ¬acc∧r=0) ⊑ ∃r ·Φinv (=, acc, A )

Fig. 9. Proving the Lemma in Fig. 8 (reduction rules are boxed ), including the Base and Inductive cases.

Our lemma-proving process unfolds the recursive predicate tossN (n, res), before showing that it
can be proven to hold for both the base case (when n=1) and the inductive case (when n>1), shown
in Fig. 9. Next, after the try-catch lemma has been proven, it can now be used by the try-catch
reduction (cf. Sec. 5.2). As shown in Fig. 10, the rule [R-Lemma-App] reduces the formula into the
instantiated (verified) lemma, i.e., Φinv (=, true, A ). Finally, the entailment checking – denoted by ⊑ –
succeeds, and the verification for the all_results function completes.
Although this example is based on a deep handler and a right recursion, we show that our

verification approach with the usage of lemmas can cover other non-trivial cases, such as a deep

try ∃res · tossN (n, res) ; ens[res] emp catchHΦ [R-Deep]

❀ try ∃res · tossN (n, res) # ∃r · ens[r] (res∧r=1) ∨ (¬res∧r=0) catchHΦ [R-Lemma-App]

❀∃r ·Φinv (=, true, A ) ⊑ ∃r · all_results(n, r) □

Fig. 10. Try-catch Reduction when Handling tossN, and the Entailment Generated for Function all_results.
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handler with a left recursion, or a shallow handler with both the right and left recursion, respectively.
We demonstrate such examples in Appendix A [TR 2024].

3.3 A Higher-Order Function with Unresolved Try-Catch Logic Construct

There are situations when try-catch constructs are not sufficiently instantiated for reduction to
occur. An example is the higher-order function foo with its corresponding ESL specification, as
shown in Fig. 11. Here, the try-catch construct cannot be directly eliminated since its body contains
a relation f (res) that is yet to be instantiated. Nevertheless, our verification rules can modularly
verify the specification of such functions, due to our adoption of try-catch logic construct.

1 let foo f : int (* foo(f , r) = try (∃res · 5 (res)) catch { !014; : → : (5, A ) } *)

2 = match f() with

3 | effect Label k -> resume k 5

4

5 let goo () : int (* goo(r) = ∃x · ens[r] x ↦→0 ∧ r=15 *)

6 = let f = (fun () -> let x = ref 0 in (perform Label) + 10)

7 in foo f

Fig. 11. An irreducible try-catch construct in foo and its caller goo

Subsequently, each function call to foo may have its unknown argument instantiated (with its
summarized specification) which can later facilitate try-catch reduction. An example is function
goo, which calls foo with a lambda argument. As shown in Fig. 12, a specification for goo can
now be obtained by reducing its instantiated try-catch logic construct. Note that our program
verification methodology is modular since we only inline summarised specification rather than
code, and always perform modular verification on a per-method basis.

goo(r) = ∃ f · ens f (res) = (∃ x, y · ens x ↦→ 0 ; Label(y); ens[res] res=y+10) ; foo(f , r)

❀ try ∃ res, x, y · ens x ↦→ 0 ; Label(y); ens[res] res=y+10 catch { !014; : → : (5, A ) }

❀
∗ ∃x · ens[r] x ↦→ 0 ∧ r=15

Fig. 12. Deriving the Specification for Function goo.

3.4 Possibility of Adding Nested Hoare Triple for Function-Type Parameters

Our new ESL logic (which will be formally presented in Figure 15) is capable of supporting the
full higher-order language. Earlier, we illustrated an example where try-catch reduction could get
stuck when unknown function parameter call(s) is present. Nevertheless, ESL can also support
nested Hoare triple for its function-type parameters, if desired, which is a traditional way for fully
supporting higher-order functions. For the same foo example, a user may instead specify:

foo(f , r) = req f (res) =Φ1 [res] ;Φ2.

where “f (res) =Φ1 [res]” is a generalization of the nested Hoare triple which captures an over-
approximation of f ’s behaviors inside foo’s precondition. When reasoning with the goo method
(Fig. 12), we would still have a lambda instantiation, namely:

f (res) = ∃ x, y · ens x ↦→ 0 ; Label(y) ; ens[res] res=y+10.
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With this new pre-condition, our verifier (see Sec 6) would now need to check a subsumption:

∃ x, y · ens x ↦→ 0 ; Label(y) ; ens[res] res=y+10 ⊑ Φ1 [res].

Using such nested Hoare triple for function-type parameter f , try-catch reduction can now
occur inside the foo method with the help of definition Φ1. To make this example more concrete,
let Φ1 [res] = ∃y · N1 ; Label(y) ; N2 [res]), where N1 and N2 are some arbitrary normal stages
(formally defined in Fig. 16). We can then perform try-catch reduction inside method foo as follows:

try∃res · f (res) catch {Label k→ k(5, r)}

= try ∃res · Φ1 [res] catch {Label k→ k(5, r)}

= try ∃res, y · N1 ; Label(y) ; N2 [res] catch {Label k→ k(5, r)}

❀
∗ ∃y · N1 ; ens y=5 ; N2 [A ] .

With this elimination of try-catch construct, our new specification for foo would be:

foo(f , r) = ∃N1,N2 · req f (res) = (∃y · N1 ; Label(y) ; N2 [res]) ; ∃y · N1 ; ens y=5 ; N2 [A ]) .

However, this new specification for foo is actually more verbose and also less precise than the
specification we provided in Fig. 11. It is less precise as pre-condition “req f (res) =Φ1 [res]” is
stronger than “req true” used implicitly in our original ESL specification for foo. In both cases, the
full higher-order language features are supported by ESL but with different degrees of precision.

4 Target Language and Specifications

In this section, we define the syntax and semantics of the target language. For the ESL specification,
we start with a general form, denoted as i , then present its normalized form, denoted as Φ.

4.1 Syntax of Target Language

We target an ML-like call-by-value, higher-order core language with primitive mutable state and
user-defined algebraic effects and handlers, defined in Fig. 13. A program P comprises a list of

(Program) P ::= spec∗ e

(Specifications) spec ::= lemma | predicate

(Try-Catch Lemma) lemma ::= match[X] f (x∗, r) # Φ with HΦ ⊑Φinv

(Predicates) predicate ::= g(x∗, r) = Φ | rec g(x∗, r) = Φ

(Handler) H ::= {G→4} ⊎ ops

(Operation Cases) ops ::= ∅ | {E(G):→4} ⊎ ops

(Values) v ::= 2 | (_ G∗→4) :: Φ

(Expressions) e ::= v | G | let G=41 in 42 | if G then 41 else 42 | 5 (G
∗) | G1:=G2 |

!G | ref (G) | assert (%) | perform E(x) | match[X] 4 with H

(Constant) c x, y, r, f , g, k ∈ var (Effect Labels) E ∈ Σ X ∈ {s, d} P=f∧c

Fig. 13. Syntax of the Target Language.
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specifications and an expression e, where ∗ superscript denotes a finite, possibly empty list of items.
Function definitions are represented using let binding and lambda expressions.
Specifications are try-catch lemmas or predicate definitions. Try-catch lemmas aid inductive

proofs for behaviors of handlers, and given lemmas are automatically proved before being applied.
Recursively defined predicates, where 6 occurs in Φ, are explicitly marked with the keyword rec. We
useHΦ to denote the specification for a handlerH . The syntax of the specification formulae Φ is
given in Sec. 4.3. Values include constants c (including integers, boolean values, and the unit value ()),
and lambda expressions (_ x∗→e) :: Φ, which are closures with annotated/inferred specifications.
Expressions consist of values, variables, let bindings, conditionals, function application, heap
operations, assertions (P is in separation logic , containing a spatial conjunction of heap f and pure
c formulae, see Figure 15 later) and constructs for performing and handling effects.

The expression perform E(x) invokes effect E (e.g., to read a file) with an argument x (e.g., file’s
location), which is analogous to raising an exception: when executed, evaluation is suspended, and
control is transferred to the nearest enclosing handler for E. While raising an exception aborts a
computation, performing an effect suspends it, passing the handler a continuation k. The handler
can use k to resume the computation with some result (e.g., the contents of the file), which would
be transferred to the suspended computation as the result of the perform statement.
The construct match[X] 4 with H wraps the expression 4 in an effect handler H . We use X to

distinguish shallow and deep handlers: B for shallow handlers and 3 for deep handlers. A shallow
handler serves its purpose at most once: after it has handled one effect, it disappears. A deep handler
is persistent: it remains installed (as the topmost frame of the captured continuation [Hillerström
and Lindley 2018; Kammar et al. 2013]) to handle any number of raised effects. Each handler consists
of a normal return clause (x→e), which is used if the expression terminates without any effects, and
a set of operation cases ops handling different effect labels, in which the variable : provides access
to the continuation, as a first-class value. This paper provide supports for both types of handlers.

4.2 Operational Semantics of Core Language

We define the operational semantics using a big-step reduction relation [(, ℎ, 4] −→ [(1, ℎ1, '
A ]

in Fig. 14, denoting from an initial store ( and heap ℎ, 4 reduces to some runtime outcome 'A ,
changing the store and heap to (1, ℎ1. Each store ( is a partial map var⇀val, where var is the set of
(immutable) program variables and val is the set of primitive values – the set of values that can
occur syntactically, augmented with memory locations ℓ and closures (_G→4, (), which are a pair
of a lambda expression and a store that gives values to its (immutable) free variables. The heap ℎ
is a partial map loc⇀val. Evaluation results 'A take one of the forms given at the top of Fig. 14 –
they are either a normal return of a primitive value Norm(v), an occurrence of an unhandled effect
Eff (E(v), 4: ) with argument v and continuation 4: (a lambda/closure), or an error Err , which occurs
on assertion failure. The inclusion of unhandled effects as an evaluation outcome allows handlers
and continuations to be directly expressible in our semantics.
Variables are read from the store, while constants evaluate to themselves. Lambda expressions

evaluate to closures, capturing the current store. There are four cases for let, which serves to
support recursion and sequence evaluation, depending on whether evaluation of 41 produces a
value, an error, or an unhandled effect; evaluation either continues, terminates, or suspends with a
continuation. Conditionals are standard, and application of a closure restores its captured store
before evaluating it. Next are heap operations and assertion, followed by rules for handling effects.
In (OP-Ret), if the evaluation of the scrutinee 4 produces a value, the return clause of the handler
is executed. If it produces an effect, there are two cases depending on whether the handler is
deep or shallow. In (OP-Shallow), execution continues in the body of the appropriate handler case
4ℎ , with two arguments bound: the argument v given when the effect was performed, and the
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'A ::= Norm(v) | Eff (E(v), 4: ) | Err

[(, ℎ, G] −→ [(, ℎ,Norm(( (G))] (OP-Var)

[(, ℎ, 2] −→ [(, ℎ,Norm(2)] (OP-Constant)

[(, ℎ, _ ~∗→4] −→ [(, ℎ,Norm((_~∗→4, ())] (OP-Lambda)

[(, ℎ, let G=� in 42] −→ [(3, ℎ3, '
A ] if [(1, ℎ, 42] −→ [(3, ℎ3, '

A ]

where � = _~∗→41 (1 = (+[G :=(�, (1)] (OP-Let-Rec)

[(, ℎ, let G=41 in 42] −→ [(2, ℎ2, '
A ] if [(, ℎ, 41] −→ [(1, ℎ1,Norm(E)] and (OP-Let-Norm)

[S+[x:=v], ℎ1, 42] −→ [(2, ℎ2, '
A ]

[(, ℎ, let G=41 in 42] −→ [(1, ℎ1, Err] if [(, ℎ, 41] −→ [(1, ℎ1, Err] (OP-Let-Err)

[(, ℎ, let G=41 in 42] −→ [(, ℎ1, Eff (E(v), (_~→let G=4: (~) in 42, ())] (OP-Let-Eff )

if [(, ℎ, 41] −→ [(1, ℎ1, Eff (E(v), 4: )]

[(, ℎ, if G then 41 else 42] −→ [(1, ℎ1, '
A ] if ( (G)=true and [(, ℎ, 41] −→ [(1, ℎ1, '

A ] (OP-If -true)

[(, ℎ, if G then 41 else 42] −→ [(1, ℎ1, '
A ] if ( (G)=false and [(, ℎ, 42] −→ [(1, ℎ1, '

A ] (OP-If -false)

[(, ℎ, 5 (G∗)] −→ [(1, ℎ1, '
A ] if ( (5 ) = (_~∗→4, (_) and (OP-Apply)

[S+S_, ℎ, 4 [(G/~)
∗]] −→ [(1, ℎ1, '

A ]

[(, ℎ, G1:=G2] −→ [(, h[S(x1):=S(x2)],Norm(())] if ( (G1) ∈ dom(ℎ) (OP-Assign)

[(, ℎ, !G] −→ [(, ℎ,Norm(ℎ(( (G)))] if ( (G) ∈ dom(ℎ) (OP-Deref )

[(, ℎ, ref (G)] −→ [(, h+[ℓ :=S(x)],Norm(ℓ)] if ℓ ∉ dom(ℎ) (OP-Ref )

[(, ℎ, assert f∧c] −→ [(, ℎ,Norm(())] if ∃ℎ1 ·ℎ1⊆ℎ and (, ℎ1 |= f∧c (OP-Assert)

[(, ℎ, assert f∧c] −→ [(, ℎ, Err] if ∀ℎ1 ·ℎ1⊆ℎ ⇒ (, ℎ1 ̸ |= f∧c (OP-Assert-Err)

[(, ℎ,match[X] 4 with H] −→ [(2, ℎ2, '
A ] if [(, ℎ, 4] −→ [(1, ℎ1,Norm(v)] and (OP-Ret)

(G→4=) ∈ H and [(1, ℎ1, 4= [v/G]] −→ [(2, ℎ2, '
A ]

[(, ℎ,match[s] 4 with H] −→ [(2, ℎ2, '
A ] if [(, ℎ, 4] −→ [(1, ℎ1, Eff (E(G), 4: )] and (OP-Shallow)

(E(G):→4ℎ) ∈ H and (G1→4=) ∈ H and

[(1+[: :=(_~→let G1=4: (~) in 4=)], ℎ1, 4ℎ [E/G]]

−→ [(2, ℎ2, '
A ]

[(, ℎ,match[d] 4 with H] −→ [(2, ℎ2, '
A ] if [(, ℎ, 4] −→ [(1, ℎ1, Eff (E(v), 4: )] and (OP-Deep)

(: = (1+[: :=(_~→match[d] 4: (~) with H , ()] and

(E(G):→4ℎ) ∈ H and

[(: , ℎ1, 4ℎ [v/G]] −→[(2, ℎ2, '
A ]

[(, ℎ,match[X] 4 with H] −→ [(, ℎ1, Eff (E(v), _ ~→match[X] 4: (~) with H)] (OP-Unhandled)

if [(, ℎ, 4] −→ [(1, ℎ1, Eff (E(v), 4: )] and

E ∉ dom(H)

[(, ℎ,match[X] 4 with H] −→ [(1, ℎ1, Err] if [(, ℎ, 4] −→ [(1, ℎ1, Err] (OP-Match-Err)

[(, ℎ, perform E(G)] −→ [(, ℎ, Eff (E(( (G)), (_~→~, []))] (OP-Perform)

Fig. 14. Big-Step Operational Semantics for Core Language with Algebraic Effects.
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continuation k carried by the effect. The rule for deep handlers (OP-Deep) differs in one crucial
way: the continuation : is wrapped with an identical handler, so subsequent effects from the
continuation will be handled under the same handler. The next two rules cover handled effects and
scrutinees which terminate with errors. Finally, (OP-Perform) is where unhandled effects originate,
with an identity continuation that is successively extended by let-bindings.

4.3 Syntax of Specification Language

We first define the most general form of ESL, using i , in Fig. 4.3.1 to facilitate a simpler semantics
model; then define a normalized form of ESL, using Φ, in Fig. 4.3.2, to facilitate more straightforward
forward reasoning, try-catch reduction, and the entailment checking. The soundness of our verifier
builds on the fact that every normalized ESL formula has a correspondence in the general format.

4.3.1 General ESL. The syntax ofi is shown in Fig. 15. The first two constructs are familiar pre/post
specifications, which compactly represent program states. In particular, the ensure construct
contains a stateQ and explicitly indicates the return variable r . Those require and ensure constructs
can be composed using sequential composition and disjunction to represent sets of program traces.
Existential variables may be used to capture intermediate values which arise along such traces.
Finally, imperative, effectful, and higher-order behavior that is difficult to summarize using

pre/post specifications can be modeled by the following three new constructs. They give rise to the
idea of stages, as they stratify traces which can otherwise be compacted into pre/post specifications.

• Effect constructs like E(x, r), describe occurrences of unhandled algebraic effects, with arguments
x∗ and a resumed variable r .

• Predicate constructs like g(x∗, r), describe calls to higher-order function parameters g, whose
(algebraic or imperative) effects are, at the point, unknown.

• Try-catch constructs like try[X] (i) catchHΦ, describe the state resulting from handling effects
occurring in some formula i under a handler whose cases are abstractly specified as ESL formulae.

(ESL) i ::= req P | ens[r] Q | i ;i | i∨i | ∃ x∗·i |

E(x, r) | f (x∗, r) | try[X] (i) catchHΦ

(Handle Spec.) HΦ ::= {pat8 → i8 }
=
8=1

(Pa�ern) pat ::= x | E(x) k

(State) P,Q ::= ∃x∗ · f ∧ c

(Heap) f ::= emp | x ↦→ v | f1 ∗ f2

(Terms) t ::= v | t1+t2 | t1-t2

(Pure) c ::= true | false | bop(t1, t2) | f (x
∗, r)=i | c1∧c2 | c1∨c2 | ¬c | ∃x · c

Fig. 15. Syntax of General ESL (Effectful Specification Logic).

We describe program states using separation logic formulae f from the symbolic heap fragment,
which can be: a predicate emp, which models an empty heap; singleton heap predicates G ↦→ v,
which describes a location in memory pointed to v by G ; formula G ↦→ _, which means that G is
allocated; separating conjunction f1 ∗ f2, and existential quantification over values (including
locations). We use c to denote pure formulae, which capture arithmetic and boolean constraints on
program variables, as well as definitions of staged specifications for functions. Binary relations
bop(t1, t2) include =, >, <, ≥ and ≤. Terms are values or additions/subtractions of terms.
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(ESL) Φ ::= \ | Φ ∨ Φ

(Staged Flow) \ ::= E∗ ; N

(Effect/Pred ./TryCatch Stages) E ::= N ; O

(Uninterpreted Predicates) O ::= E(x, r) | g(x∗, r) | try[X] (Φ) catchHΦ

(Normal Stage) N ::= ∃x∗ · req P ens Q

Fig. 16. Syntax of Normalized ESL.

4.3.2 Normalized ESL. In most of this paper, we focus on ESL formulae occurring in a more
structured form Φ, shown in Fig. 16. The rules of Sec. 5.1 operate on and maintain this form, and
additional normalization steps for it are covered in Sec. 5.2. The intuition behind this form is that
we would like to reason about straight-line program paths described using staged flows, which are
sequences of stages (and thus describe segments in traces). Top-level ESL formulae Φ are disjunctions
of flows \ . Staged flows are in the form of (E∗ ; N ), which contains a prefix of stages E∗ followed
by a final normal stage N . Each E stage contains a normal stage followed by an uninterpreted
predicate, O, which indicates unhandled effects, higher-order calls that are not yet instantiated or
irreducible try-catch constructs, respectively. For example, an effect stages likeN ; E(x, A ), contains
a normal stage N , which describes the state just before the occurrence of an unhandled effect.

Discussion. Traditional separation logic specifications denoted by (req P ens Q) can be captured
by a single normal stage. Therefore, ESL formulae describe program traces in a compact form,
revealing only interesting points along them. This design enables careful specification of effectful
and imperative program behaviors. In the next section, we formalize the semantics of ESL formulae.

4.4 Semantic Model of Stages

We assume a standard separation logic models relation (, ℎ |= f∧c , which holds iff the state
(, ℎ satisfies the heap formula f∧c . Other standard notation for heaps is used: dom(h) is the
domain of heap h, h1◦h2=h is the disjoint union, i.e., given dom(h1)∩dom(h2)=∅, h1∪h2=h, S+[x:=v]
and S\{x} respectively denote store extension and removal of variables. S1+S2 denotes a store
merge where bindings in (2 take precedence. The same operations apply to heaps, which may
additionally be updated, denoted by h[x:=v]. We write ℎ1⊆ℎ2 to denote that ℎ1 is a subheap of ℎ2,
i.e., ∃ℎ3 ·ℎ1◦ℎ3=ℎ2.

The semantics of a staged formula i is given as a models relation [�, (, ℎ]❀< [�1, (1, ℎ1, '
2 ] |= i .

Since staged formulae describe execution traces, the models relations holds iff in the starting state
(, ℎ, if the program described abstractly by i terminates, it does so in a final state (1, ℎ1 with
compile-time (set-based) outcome '2 , which is either of the form Norm(A ), indicating the normal
return of a value via variable A , Eff (E(v, A ), i1), indicating an unhandled effect E with argument E ,
return variable A and continuation described by i1, or ⊤, indicating an indeterminate result (that
includes Err error). � (resp. �1) is a boolean value that is false (✗) iff a precondition failure has
possibly occurred prior to (resp. after) the execution of i , otherwise it is true (✓). If a precondition
failure occurs during the execution of i , the result in the final state becomes indeterminate (⊤),
and further execution vacuously succeeds, as shown in the first rule in Fig. 17.

The meaning of req f∧c is given by the next two rules: it requires a heaplet ℎ2 satisfying f∧c to
be part of the initial heap ℎ and removes it, analogous to a standard separation logic precondition.
If there is no such heaplet, a precondition failure occurs. ens f∧c plays a dual role, creating a
heaplet ℎ2. Like the cases for let in the operational semantics, there are three cases for sequencing
depending on whether the first formula results in a value, effect, or error, with errors propagating via
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[✗, (, ℎ]❀< [✗, (, ℎ,⊤] |= i '2 ::= Norm(A ) | Eff (E(A ), i) | ⊤

[✓, (, ℎ]❀< [✓, (, ℎ1,Norm(_)] |= req f∧c iff ℎ1⊆ℎ and (, ℎ1 |= f∧c

[✓, (, ℎ]❀< [✗, (, ℎ,⊤] |= req f∧c iff ∀ℎ1 · ℎ1⊆ℎ ⇒ (, ℎ1 ̸ |= f∧c

[✓, (, ℎ]❀< [✓, (, ℎ◦ℎ2,Norm(A )] |= ens[A ] f∧c iff dom(ℎ)∩dom(ℎ2)=∅ and (, ℎ2 |= f∧c

[✓, (, ℎ]❀< [�, (2, ℎ2, '
2 ] |= i1;i2 iff ∃(1, ℎ1 · [✓, (, ℎ]❀< [✓, (1, ℎ1,Norm(A )] |= i1

and [✓, (1, ℎ1]❀< [�, (2, ℎ2, '
2 ] |= i2

[✓, (, ℎ]❀< [✗, (1, ℎ1,⊤] |= i1;i2 iff [✓, (, ℎ]❀< [✗, (1, ℎ1,⊤] |= i1

[✓, (, ℎ]❀< [✓, (1, ℎ1, '
2 ] |= i1;i2 iff [✓, (, ℎ]❀< [✓, (1, ℎ1, Eff (E(x∗, A ), i0)] |= i1

and '2 = Eff (E(x∗, A ), (i0;i2))

[✓, (, ℎ]❀< [�1∧�2, (3, ℎ3, '3] |= i1 ∨i2 iff [✓, (, ℎ]❀< [�1, (1, ℎ1, '1] |= i1 0=3

[✓, (, ℎ]❀< [�2, (2, ℎ2, '2] |= i2 0=3

((3, ℎ3, '3) ∈ {((1, ℎ1, '1), ((2, ℎ2, '2)}

[✓, (, ℎ]❀< [�, (1, ℎ1, '
2 ] |= ∃G ·i iff ∃ v · [✓, S+[x:=v], ℎ]❀< [�, (1, ℎ1, '

2 ] |= i

[✓, (, ℎ]❀< [�, (1, ℎ1, '
2 ] |= f (v∗, r ′) iff (f (G∗, A ) =i) ∈ ( and

[✓, (, ℎ]❀< [�, (1, ℎ1, '
2 ] |= i [v∗/G∗, A ′/A ]

[✓, (, ℎ]❀< [✓, (, ℎ, '2 ] |= E(x, A ) iff '2 = Eff (E(x, A ), ens[r] emp)

[✓, (, ℎ]❀< [✗, (1, ℎ1,⊤] |= try[X] (i) catchHΦ iff [✓, (, ℎ]❀< [✗, (1, ℎ1,⊤] |= i

[✓, (, ℎ]❀< [✓, (1, ℎ1, '
2 ] |= try[X] (i) catchHΦ iff [✓, (, ℎ]❀< [✓, (1, ℎ1, Eff (E(x, A ), i1)] |= i

E ∉ dom(HΦ) and

'2 = Eff (E(x, A ), try[X] (i1) catchHΦ)

[✓, (, ℎ]❀< [�, (1, ℎ1, '
2 ] |= try[X] (i) catchHΦ iff [✓, (, ℎ]❀< [✓, (2, ℎ2,Norm(A )] |= i and

(G→i=) ∈ HΦ and

[✓, (2, ℎ2]❀< [�, (1, ℎ1, '
2 ] |= i= [r/x]

[✓, (, ℎ]❀< [�, (1, ℎ1, '
2 ] |= try[s] (i) catchHΦ iff [✓, (, ℎ]❀< [✓, (2, ℎ2, Eff (E(x, A ), i1 [A=])] |= i

(E(~):→i2) ∈ HΦ and (G1→i=) ∈ HΦ and

(: = (2+[: :=_ (A, A2 )→i1 [A=]; (i= [A=/G1]) [A2 ]]

and [✓, (: , ℎ2]❀< [�, (1, ℎ1, '
2 ] |= i2 [x/~]

[✓, (, ℎ]❀< [�, (1, ℎ1, '
2 ] |= try[d] (i) catchHΦ iff [✓, (, ℎ]❀< [✓, (2, ℎ2, Eff (E(x, A ), i1)] |= i

(E(~):→i2) ∈ HΦ and

(: = (2+[: :=_ (A, A2 )→ (try[d] (i1) catchHΦ) [A2 ]]

and [✓, (: , ℎ2]❀< [�, (1, ℎ1, '
2 ] |= i2 [x/~]

Fig. 17. Semantics of Staged Formulae with Effects and Try-Catch Handlers.
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precondition failures. Disjunction chooses between one of two flows and ensures that precondition
failure cannot occur if both�1 and�2 have no precondition failures. Existentials add variables to the
store with existential values; “reading” of these variables from the store occurs via the separation
logic models relation. The semantics of predicate stages is simply that of the function they stand
for. As we define the operational semantics, it is reasonable to expect that to execute programs,
they must be closed, and predicate stages refer to functions defined in the program. The remaining
cases handle effect stages. Like the case for perform in the operational semantics, an effect stage
occurring on its own is unhandled, resulting in an unhandled effect with an identity continuation,
represented as a trivial staged formula. The rules for try cover the cases where the scrutinee staged
formula fails or produces an unhandled effect, a result, or a handled effect under a shallow or deep
handler, in order. They are largely similar to the operational semantics, as the try-catch construct
is a direct symbolic analogue of the match-with statement.

5 Forward Verification

Fig. 18. System Overview

Fig. 18 presents an overview of our automated verification system. Our main technical contribu-
tions are captured in the rounded boxes: a Hoare-style forward verifier, a reduction for try-catch
constructs and an entailment checker. The input of the forward verifier is a target program P, and
its functions are annotated with the ESL specifications Φ. The input of the entailment checking is a
pair of ESL formulae: LHS and RHS, referring to the entailment LHS ⊑ RHS to be checked (LHS
and RHS refer to left/right-hand-side effects respectively). The ESL entailment relation ⊑ is formally
defined in Sec. 6. The workflow of our automated verification system is as follows:

(1) The forward verifier takes a program P, which contains a set of functions annotated with
specifications Φ, and predefined lemmas. For each function, a modular verification – where
functions can be replaced by their already-verified specifications – computes the actual behaviors
of the function body, denoted by Φactual , using a set of forward rules, defined in Sec. 5.1.

(2) The forward verifier employs a set of reduction and normalization rules, defined in Sec. 5.2, to
eliminate try-catch logic constructs when possible.

(3) Taking Φactual and Φ, the back-end checker proves/disproves the entailment Φactual ⊑ Φ. We
establish a set of entailment rules in Sec. 6. Separation logic proof obligations are reduced [Chin
et al. 2011; Piskac et al. 2013] to decidable first-order theory that fits well into the satisfiability
modulo theories (SMT) framework. We explain the entailment checking in Sec. 6.

Next, we elaborate on the forward reasoning rules in Sec. 5.1, the try-catch reduction in Sec. 5.2,
and present the soundness proofs in Sec. 5.3.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 267. Publication date: August 2024.



267:16 Yahui Song, Darius Foo, and Wei-Ngan Chin

5.1 Forward Verification Rules

We formalize a set of syntax-directed forward rules for the target language. The forward reasoning
is in the form of Hoare-style triples: ⊢ {N} e {Φ}. Under a partial correctness interpretation, which
we adopt in this paper, the triple means that ifN describes the latest normal stage before executing
e, if e terminates, Φ describes the staged flows that will be triggered after. The verification is
initialized with a fresh normal stage, i.e., ens emp, as a short-hand for (req emp ens[_] emp).

[FV -Frame]

{N} 4 {Φ4 }

{Φ ; N} 4 {Φ ; Φ4 }

[FV -Ex] {G∗}∩fvars(4)={}

{req P ens Q} 4 {Φ}

{∃x∗ · req P ens Q} 4 {∃x∗ ·Φ}

[FV -Disj]
{Φ1} 4 {Φ3} {Φ2} 4 {Φ3}

{Φ1 ∨ Φ2} 4 {Φ3}

[FV -Var-Const]
fresh A N=req P ens[_] Q v ::= 2 | G

{N} v {∃r · req P ens[r] Q ∧ r=v}

[FV -Let]
fresh G {N} e1 {∃r ·Φ1 [r]} {Φ1 [G/A ]} e2 {Φ2}

{N} let G=e1 in 42 {∃x ·Φ2}

[FV -Perform]

fresh A

{N} perform E(G)

{∃r · N ; E(G, A )}

[FV -Lambda-Def ]
fresh 5 N=req P ens Q {ens Pure(Q)} 4 {∃r ′ · Φ′[A ′]} Φ′[A ′]⊑Φ[A ′/A ]

{N} (_ G∗→4) ::∃ r·Φ[A ] {∃f · req P ens[f ] Q ∧ f =(_ (x∗, r)→Φ[r])}

[FV -If -Else]
{N∧G} e1 {Φ1} {N∧¬G} e2 {Φ2}

{N} if G then 41 else 42 {Φ1 ∨ Φ2}

[FV -Ref ]
fresh y N = req P ens Q

{N} ref (G) {∃y · req P ens[y] Q ∗ (y ↦→ x)}

[FV -Pred]
fresh A (5 (G∗, A ) =Φ) ∈ Pure(N)

{N} 5 (~∗) {∃r · N ; Φ[~∗/G∗]}

[FV -Assert]
fresh A N=req P ens Q & ∗ ?%� ⊢Bi-ab (f∧c) ∗ ?_

{N} assert (f∧c) {∃A · req P ∗ PA ens[r] Q ∗ PA∧r=()}

[FV -Rec-Pred]
fresh A (rec 5 (x∗, A ) =Φ) ∈ Pure(N)

{N} 5 (y∗) {∃r · N ; 5 (y∗, A )}

[FV -Read]
fresh I N=req P ens Q & ∗ ?%� ⊢Bi-ab (G ↦→ I) ∗ ?&�

{N} !G {∃I · req P ∗ PA ens[z] QF ∗ (x ↦→ z)}

[FV -Call-Unknown]
fresh A (5 (x∗, A ) = . . .) ∉ Pure(N)

{N} 5 (y∗) {∃r · N ; 5 (y∗, A )}

[FV -Write]

fresh A N=req P ens Q & ∗ ?%� ⊢Bi-ab (G ↦→_) ∗ ?&�

{N} G := ~ {∃A · req P ∗ PA ens[r] QF ∗ (x ↦→y)∧r=()}

{N} 4 {Φ} ∀8∈{1..=}{ens Pure(Φ)} 48 {Φ8 } HΦ = {pat8 → Φ8 }
=
8=1

try[X] (Φ) catchHΦ ❀Φ′ (cf. Sec. 5.2)

{N} match[X] 4 with {pat8 ⇒ 48 }
=
8=1 {Φ

′}
[FV -Match]

Fig. 19. Hoare-style Forward Reasoning Rules
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We present key forward Hoare-style reasoning rules in Fig. 19. Three structural rules are first
shown to handle the frames on the history flows ([FV-Frame]), existential variables ([FV-Ex]),
and the disjunctions on the starting program state ([FV-Disj]).

Rule [FV -Var-Const] tracks the result r of latest program state by binding it to a value v, which
can be either a variable or a constant. Rule [FV -Let] firstly reasons about e1 and generates an
existential variable x, then binds x to the result value of e1 in its last normal stage and continues to
compute the staged flows of the rest of the code. The final state of such sequencing is to concatenate
the history flows of e1 and the flows generated from e2 .

Rule [FV -Perform] models each effect as a predicate with an existential result r . As shown in the
rule [FV-Lambda-Def ], given any lambda definition with a specificationΦ[r], modular verification
starts by computing the actual behavior of the function body, denoted by ∃r ′ ·Φ′[A ′], and check
whether it entails its specifications. If the entailment succeeds, the rule binds its specification to
a freshly created existential name f . As lambda function may be applied anytime and anywhere,
we can only make use of pure information that is available when it was first constructed. Hence,
Pure(Q) extracts pure formula that can be used as an assumption for use by the lambda’s body. Rule
[FV -If -Else] computes the staged flows from both branches by extending the state with v bound to
true and false, respectively; then, it disjunctively unions the results. Here, we write N∧c to mean
(∃G∗ · req P ens Q ∧ c ), if (N = ∃G∗ · req P ens Q). Rule [FV -Pred] concatenates the instantiated
specification for the callee function f to the current state. In cases where the predicate is recursively
defined, the rule [FV -Rec-Pred] instantiates the predicate without unfolding the definition. In cases
where f is unknown in the current program, the rule [FV -Call-Unknown] extends the program
state with an uninterpreted predicate.

[FV -Match] computes the staged flows of e, denoted as Φ; integrates the handler’s specification,
denoted as HΦ; then it employs reduction rules to eliminate the try-catch construct. We elaborate
on the reduction for handlers in Sec. 5.2. Here, Pure(Φ) is meant to propagate the pure information
accumulated from the staged flow Φ.

[FV -Assert], [FV -Write], [FV -Read], and [FV -Ref ] make use of a bi-abduction operator ⊢Bi-ab,
and propagate the anti-frame to the precondition and update the postcondition based on the frame.

Bi-Abduction. Bi-abduction is a form of logical inference for separation logic to support automated
heap-based local reasoning. Usually, an entailment for separation logic like P ⊢sl Q means that P
implies Q. A challenge is for the theorem prover to discover a pair of frame and anti-frame formulae
that make the entailment valid. The inference of the frame QF and anti-frame PA in a bi-abduction
relation (P ∗ ?PA ⊢Bi-ab Q ∗ ?QF ) is now well-understood [Calcagno et al. 2009; Le et al. 2014].

AnExample of the ForwardReasoning. Fig. 20 sketches the steps of verifying the callee function
(defined in Fig. 1). Program behavior is captured in the form of { Φ }. We label the steps from (1) to
(7) and mark the applied forward rules in [gray].

The initial state in step (1) and the entailment checking in step (7) are obtained by the rule
[FV-Fun]. The state in step (4) is obtained by applying the rules [FV-Read] and [FV-Write] in
sequence. At step (6), we obtained the actual behaviors Φactual of callee, which can be normalized
into one effect-flow followed by one normal-flow, namely Φactual (r

′) = E ; N where,

E = ∃x, ret · ens x ↦→0 ; Label(ret) and N = ∃z · req x ↦→z ∧ z+1=1 ens[r ′] x ↦→z+1 ∧ r ′=ret+2.

Deployed Normalisation Rules. Fig. 21 presents the normalization rules that are used during
the reasoning and keep the program states always in a normalized form.
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(1) let callee (): int = [FV-Fun]

{ ens emp }
(2) let x = ref 0 in [FV-Ref ] [FV-Let]

{ ∃x · ens[x] x ↦→0 }
(3) let ret = perform Label in [FV-Perform]

{ ∃x, ret · ens x ↦→0 ; Label(ret) }
(4) x := !x + 1; [FV-Read] [FV-Write]

{ ∃x, ret · ens x ↦→0 ; Label(ret); ∃z, r · req x ↦→z ens[r] x ↦→z+1 ∧ r=() }
(5) assert (!x = 1); [FV-Assert]

{ ∃x, ret · ens x ↦→0 ; Label(ret); ∃z, r · req x ↦→z ∧ z+1=1 ens[r] x ↦→z+1 ∧ r=() }
(6) ret+2 [FV-Var]

Φactual (r
′) = ∃x, ret · ens x ↦→0 ; Label(ret); ∃z · req x ↦→z ∧ z+1=1 ens[r ′] x ↦→z+1 ∧ r ′=ret+2

(7) Φactual (r
′) ⊑ callee(rc) [r

′/rc] [FV-Fun] where callee(rc) is formally defined in Fig. 2.

Fig. 20. Demonstrating the Forward Reasoning for Function callee, defined in Fig. 1

[# -Norm-Disj]
(N ; Φ1) ↩→ Φ′

1
(N ; Φ2) ↩→ Φ′

2

N ; (Φ1 ∨ Φ2) ↩→ Φ′
1
∨ Φ′

2

[# -Norm-Flow]
\=N ′;\ ′ N ′′

↩→ N ;N ′

N ; \ ↩→ N ′′ ; \ ′

N = ∃G∗ · req P ens Q N ′
= ∃~∗ · req P ′ ens Q′

& ∗ ?%� ⊢Bi-ab %
′ ∗ ?&� N ′′

= ∃G∗, ~∗ · req P ∗ PA ens Q′ ∗ QF

N ; N ′
↩→ N ′′

[# -Norm-Norm]

Fig. 21. Deployed Normalization Rules.

5.2 Reduction of Try-Catch Constructs

Given any handler type X , any ESL formula Φ, and any handler specification HΦ, the relation
(try[X] (Φ) catchHΦ ❀Φ′) holds if after Φ is handled by HΦ, the staged flows result to Φ′. All the
disjunction within the try-block are reduced independently, by [R-Disj], shown as follows:

try[X] (Φ1 ∨ Φ2) catchHΦ = try[X] (Φ1) catchHΦ ∨ try[X] (Φ2) catchHΦ [R-Disj]

The complete set of try-catch reduction rules is given in Fig. 22. We assume that the specification
of the try-block is in a normalized form, i.e., (\ = E∗ ; N ), and the nested handlers are reduced
before hand, if possible; otherwise, they would be left as irreducible.
Rule [R-Normal] denotes the base case, which is applied when there is a normal stage N and

returns r , indicating the execution of the handled program has finished. In this case, the resulting
staged flows are achieved by composing N with the instantiated specification of the normal clause.
This step corresponds to the operational semantics rule (OP-Ret) in Fig. 14. Rule [R-Skip] is applied
when the starting flow is an effect stage E, which the current handler cannot handle, corresponding
to (OP-Unhandled). In this case, it adds E into the history and continues to reason about the rest
of the flow. Rule [H -Unfold] unfolds the non-recursive definition of a higher-order stage. In cases
where f is unknown (cf. the example in Sec. 3.3), the try-catch construct is left as irreducible at this
moment and the reduction resumes whenever f is suitably instantiated.
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(G→Φ=) ∈ HΦ

try[X] (N [r]) catchHΦ ❀N[r] ; Φn [r/x]
[R-Normal]

E = N ; E(x, A ) E ∉ dom(HΦ)

try[X] (E ; \ ) catchHΦ ❀ E ; try[X] (\ ) catchHΦ

[R-Skip]

E = N ; 5 (x∗, A ′) (5 (y∗, A ) = Φ5 ) ∈ P

try[X] (E ; \ ) catchHΦ ❀ try[X] (N ; Φf [x∗/y∗, r ′/r] ; \ ) catchHΦ

[R-Unfold]

E=N ; E(x, A ) E∈dom(HΦ) (G ′→Φ=)∈HΦ Φ = \ [A1] ; Φ= [A1/G
′]

try[s] (E ; \ ) catchHΦ ❀ try[s] (E # Φ) catchHΦ

[R-Shallow]

E = N ; E(x, A ) E ∈ dom(HΦ) try[d] (\ ) catchHΦ ❀Φ

try[d] (E ; \ ) catchHΦ ❀ try[d] (E # Φ) catchHΦ

[R-Deep]

E = N ; E(x, A ) (E(~):→Φ) ∈ HΦ Φ′
= Φ[x/~, (_(A, A2 )→Φ[A2 ])/:]

try[X] (E # Φ[rc]) catchHΦ ❀N ; Φ′
[R-Eff -Handle]

E = N ; 5 (x∗, A ′) (rec 5 (y∗, A ) = Φ5 ) ∈ P fst (Φ5 ) ∈ dom(HΦ)

(try[X] (f (y∗, r) # Φ) catchHΦ ⊑ Φinv) ∈ P

try[X] (E # Φc) catchHΦ ❀N ; Φinv [x∗/y∗, r ′/r,Φc/Φ]
[R-Lemma-App]

Fig. 22. Reduction Rules for Try-Catch Constructs

Before actually handling any effects, we first reason about the behaviors of its continuation
so that when later needed, we could instantiate the high-order predicate k using the continua-
tion’s specification. Thus, we introduce a new intermediate try-catch logic construct of the form
(try[X] (E # Φc) catchHΦ) where E is the current effect stage, and Φc is the reduced specification
for E’s continuation with respect to the definition of HΦ, formally defined in Fig. 23.
With that, we distinguish the reasoning of the deep and shallow handlers. Rule [R-Shallow]

handles the continuation using the normal clause ofHΦ, corresponding to our semantics of shallow
handlers (OP-Shallow), which are only installed for the first effect and the final normal return, and
inserts a # marker between the current effect stage and the handled continuation, i.e., Φ. Whereas

[✓, (, ℎ]❀< [�, (1, ℎ1, '] |= iff E=N ; E(x, A ) and (E(~):→i1) ∈ HΦ and

try[X] (E #i [rc]) catchHΦ [✓, (, ℎ]❀< [�2, (2, ℎ2,Norm(_)] |= N

(3 = (2+[: := _ (A, A2 )→i [A2 ]] and

[�2, (3, ℎ2]❀< [�, (1, ℎ1, '] |= i1 [x/~]

Fig. 23. The Semantics of the # Try-Catch Construct
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[R-Deep] reasons about the continuation using HΦ unchanged, corresponding to the semantics of
deep handlers (OP-Deep), which are persistently installed. After the continuations are properly
handled, rule [R-Handle] handles the current effect by instantiating the arguments and bind k

using a lambda specification constructed using the specification for the continuation.
A try-catch lemma of a try-catch construct is in the form (try[X] (f (y∗, r) # Φ) catchHΦ = Φinv)

where f is recursively defined and Φ is the specification for the already handled continuation. Rule
[R-Lemma-App] firstly retrieves the lemma definition and reduces the current try-catch construct
to the instantiated summary, i.e., Φinv [x

∗/y∗, r ′/r,Φc/Φ]. Note that the side condition requires
that the first possible effect generated by f must be handled by the current handler, expressed as
“fst (Φf ) ∈ dom(HΦ)”. Otherwise, [R-Unfold] and [R-Skip] shall be applied before hand.

Theorem 5.1 defines the soundness of the try-catch reduction process. Moreover, the reduction
always terminates successfully if sufficient lemmas are given and proven; otherwise, it can be left as
irreducible when there are unknown predicates or lemmas. Termination of the try-catch reduction
rules themseves can be proven with the help of the following decreasing measure.

" [try(Φ1#Φ2)catchH ] < " [try(Φ1; Φ3)catchH ]

" [try(Φ2)catchH ] < " [try(Φ1; Φ2)catchH ]

" [try(Φ1; unfold(f (x
∗)); Φ2)catchH ] < " [try(Φ1; f (x

∗); Φ2)catchH ], if 5 is non-recursive

" [Φ1] < " [Φ2], if Φ1 is a sub-term of Φ2

Discussion. Note that the induction principle applies to both deep and shallow handlers in a unified
manner, which supports arbitrary recursive calls without restricting to one-shot continuations. We
demonstrate the applicability using a left recursive toss function in both deep and shallow handlers
in Appendix A [TR 2024]. To the author’s knowledge, this cannot be achieved by prior works.

5.3 Soundness Proofs

Theorem 5.1 (Soundness of Reduction). Given any try-catch reduction, try[X] (Φ) catchHΦ ❀Φ′;

forall ( , ℎ, �1, (1, ℎ1, and '1, if [✓, (, ℎ]❀< [�1, (1, ℎ1, '1] |= try[X] (Φ) catchHΦ,

then [✓, (, ℎ]❀< [�1, (1, ℎ1, '1] |= Φ′ holds.

Proof. By induction on the structure of the reduction rule, elaborated in Appendix B.1 [TR
2024]. □

Theorem 5.2 (Soundness of Normalization). Given any normalization rule, if it concludes that

(i ↩→ Φ); forall (0, ℎ0, �1, (1, ℎ1, and '1, if [✓, (0, ℎ0]❀< [�1, (1, ℎ1, '1] |= i ,

then [✓, (0, ℎ0]❀< [�1, (1, ℎ1, '1] |= Φ holds.

Proof. By induction on the structure of the normalization rule, elaborated in Appendix B.2 [TR
2024]. □

Theorem 5.3 (Soundness of Forward Rules). If the forward reasoning concludes that a given triple

⊢ {N} 4 {Φ} is valid, forall (0 and ℎ0, if [✓, (0, ℎ0]❀< [✓, (, ℎ,Norm(_)] |= N , and

let SH={((1, ℎ1, '1) | [✓, (0, ℎ0]❀< [✓, (1, ℎ1, '1] |= Φ}, and SH≠∅, then [(, ℎ, 4] −→ [(2, ℎ2, '2] ∧

'2≠Err ∧ ∃((3, ℎ3, '3) ∈ SH · ([✓, (0, ℎ0]❀< [✓, (3, ℎ3, '3] |= Φ ∧ (3⊇(2, ℎ3=ℎ2, '2∈'3).

Proof. By induction on the derivation of [(, ℎ, 4] −→ [(2, ℎ2, '2], and the proofs are built on top
of Theorem 5.1 and Theorem 5.2. Details are elaborated in Appendix B.3 [TR 2024]. □
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To understand Theorem 5.3, recall that in the triple ⊢ {N} 4 {Φ}, Φ describes the behavior of
4 if it is executed in some state following some “historical” execution that ends with N . During
the verification, as 4 is traversed, the forward verification rules intuitively transform the history,
resulting in a final abstraction of its behavior denoted as Φ. In the statement of the theorem, (0, ℎ0 is
the initial state prior to the execution of the history N , which leads to the state (, ℎ in which 4 will
be executed, in turn leading to the state (2, ℎ2, '2. The theorem says that given a triple ⊢ {N} 4 {Φ}

whose validity is witnessed by the non-emptiness of the set SH (which contains the safe final states
(1, ℎ1, '1 satisfying Φ, given initial states (0, ℎ0), then the execution of 4 will result in a (safe) state
corresponding to some state (3, ℎ3, '3 in SH . This correspondence is, concretely, that the final heap
should be identical, the final result should be non-erroneous and identical, and the store of Φ should
be a superset of that of 4 (due to variables arising from staged existentials).

6 Entailment Checking

Given two ESL formulae Φ1 and Φ2 , this section presents an algorithm for automatically checking
the entailment relation Φ1 ⊑ Φ2 . Intuitively, proving Φ1 ⊑ Φ2 amounts to checking whether all the
possible flows in the antecedent Φ1 form a subset of all the possible flows in the consequent Φ2 .

[Entail-!�(-$']

%� ⊢ Φ1 ⊑ Φ⇝ &1
�

%� ⊢ Φ2 ⊑ Φ⇝ &2
�

PA ⊢ Φ1 ∨ Φ2 ⊑ Φ⇝ Q1
F
∨ Q2

F

[Entail-'�(-$']

%� ⊢ \ ⊑ Φ8 ⇝ &8
�

8 ∈ {1, 2}

PA ⊢ \ ⊑ Φ1 ∨ Φ2 ⇝ Qi
F

[Entail-Unfold-LHS]

g(x∗, r) = Φ1 ∈ P

%� ⊢ N1 ; Φ1 [y
∗/x∗] [r1/r] ⊑ Φ⇝ &�

PA ⊢ N1 ; g(y∗, r1) ⊑ Φ⇝ QF

[Entail-Flow]

%� ⊢ E1 ⊑ E2 ⇝ &1
�

&1
�
⊢ \1 ⊑ \1 ⇝ &2

�

PA ⊢ (E1 ; \1) ⊑ (E2 ; \2) ⇝ Q2
F

%� ∗ %2 ⊢sl (∃x
∗ · %1) ⇝ &1

�
&1
�
∗ &1 ⊢sl (∃y

∗ ·&2) ⇝ &2
�

%� ⊢ (∃ x∗· req P1 ens Q1) ⊑ (∃ y∗· req P2 ens Q2) ⇝ &2
�

[Entail-Norm]

%� ⊢ N1 ⊑ N2 ⇝ &1
�

&1
�
⊢sl x=~ ∧ A1=A2 ⇝ &2

�

%� ⊢ N1 ; E(x, A1) ⊑ N2 ; E(~, A2) ⇝ &2
�

[Entail-Eff ]

%� ⊢ N1 ⊑ N2 ⇝ &1
�

&1
�
⊢sl x

∗
=~∗ ∧ A1=A2 ⇝ &2

�

%� ⊢ N1 ; g(x∗, A1) ⊑ N2 ; g(~∗, A2) ⇝ &3
�

[Entail-HO]

%� ⊢ N1 ⊑ N2 ⇝ &1
�

X1=X2 &1
�
⊢ Φ1 ⊑ Φ2 ⇝ &2

�

%� ⊢ N1 ; try[X1] (Φ1) catchHΦ ⊑ N2 ; try[X2] (Φ2) catchHΦ ⇝ &2
�

[Entail-Try-Catch]

Fig. 24. Selected Entailment Rules for Normalized Staged Flows

Due to the choice of separation logic as a base logic, the entailments between two staged flows are
of the form PA ⊢ Φ1 ⊑ Φ2 ⇝ QF , where %� is a given assumption (initialized by emp ∧ true) and&�

is the residue (as the result of frame inference), both of which are state formulae. The entailment rules
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are shown in Fig. 24. Rules [Entail-LHS-OR] and [Entail-RHS-OR] handle disjunctive antecedents
and consequents, respectively. Every flow in the antecedent must be allowed by the consequent,
whereas it is acceptable to have additional flows in the consequent that do not correspond to flows
in the antecedent. The rest of the rules are for entailments between two disjunction-free staged
flows. In particular, the rule [Entail-Flow] demonstrates how the use of normalized specifications
“aligns” the antecedent and consequent, allowing entailment proofs to be carried out stage by stage,
starting with the heads of both flows. [Entail-Unfold-LHS] allows the use of provided nonrecursive
predicate definitions; there is an analogous rule for unfolding on the right. Recursive predicate
definitions are handled via lemmas, in the same manner as try-catch formulae. The proving of
lemmas is based on the cyclic proof principles [Brotherston 2005], which rewrites the formulae by
taking turns applying the unfolding rules and try-catch reduction rules.
Rule [Entail-Norm] handles normal stages, which are pre/post specifications, and this reduces

to checking the contra-variance of preconditions and covariance of postconditions. Separation
logic proof obligations, i.e., ⊢sl , are reduced to decidable first-order theory that fits well into the
satisfiability modulo theories (SMT) framework, which is standard [Chin et al. 2011; Piskac et al.
2013]. The following rules are for different cases regarding the suffixes of given stages E.

Effect stages and predicate stages whose definitions are unknown are treated similarly, as shown
in the rules [Entail-Eff ] and [Entail-HO]. When proving the intermediate stages, the symbols, i.e.,
E or g, used have to match and under the given assumptions PA and the frame produced by the
preceding normal stage Q1

F , the formal arguments and return variables must be provably equal
terms. In the rule [Entail-Try-Catch], try-catch stages must match more or less exactly. Not much
is done here as they are best eliminated away by the try-catch reduction; when this is not possible,
there is often no better choice than to leave them in specifications.
The entailment checking is terminating because the length of staged flows and the number of

disjunctions in Φ are considered finite. The soundness of the entailment checking is defined in
Theorem 6.1, making use of a model set relation, defined in Definition 6.1, which abstracts the set of
final states that one given ESL specification Φ can accept.

Definition 6.1 (Model Set Relation). Given any ( , ℎ, (� , and Φ, we say they have the relation of

([✓, (, ℎ]❀set
< (� |= Φ), iff SH={(�1, (1, ℎ1, '1) | [✓, (, ℎ]❀< [�1, (1, ℎ1, '1] |= Φ} holds.

Theorem 6.1 (Soundness of Entailment Rules). If the entailment checking proves that an entailment
(PA ⊢ Φ1 ⊑ Φ2 ⇝ QF ) is valid, forall ( , ℎ, (�1 and (�2, if ([✓, (, ℎ]❀set

< (�1 |= Φ1∧%�) and

([✓, (, ℎ]❀set
< (�2 |= Φ2∧&� ), then (�1 ⊆ (�2 holds.

Proof. By induction on the structure of the entailment rule, elaborated in Appendix B.4 [TR
2024]. □

7 Another Case Study and Experimental Results

Apart from proving the soundness of our approach, we prototype an automated verification tool,
Heifer+, for 5K LoC on top of OCaml 5, targeting OCaml programs with the effect syntax from
Multicore OCaml2. Here, we demonstrate one more case study and present experimental results
based on a suite of benchmark programs. Experiments were done on a MacBook with a 2.6 GHz
6-Core Intel i7 processor. The source code and the evaluation benchmark are openly accessible
[Zenodo 2024].

2https://github.com/ocaml-multicore/ocaml-multicore
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7.1 Case Study: McCarthy’s Angelic Choice Operator

McCarthy’s ambiguous operator amb3 is an interesting mathematical operator that can rewind
into the past whenever it sees trouble and try a different choice. Describing its semantics using
multi-shot continuation is much less complex, as shown in Fig. 25. The amb function takes a list of
boolean values xs, and its handler iterates the list and resumes the continuation with each boolean
element. For simplicity, we used a list of booleans instead of a list of thunks. If (Failure 500) is
raised from the continuation, the handler omits the exception and continues the iteration. If any
continuation succeeds, it invokes a Success effect, which will be caught, re-raised, and caught again;
finally, it handles the Success effect by returning its carried value. To make the example more
challenging, we added a mutable counter to record how many times the iterator had backtracked
before reaching the first succeeding element.

1 effect Choose : bool list -> bool

2 effect Success : int -> unit

3 effect Failure : int -> int

4

5 let amb (xs:bool list) counter : bool

6 = let b = perform (Choose xs) in counter := !counter +1; b

7

8 let f xs counter = if amb xs counter then 7 else perform (Failure 500)

9

10 let handle (xs : bool list) counter : int

11 = match (f xs counter) with

12 | x -> x

13 | effect (Choose xs) k ->

14 match List.iter (fun ele ->

15 match let seven = resume k ele in perform (Success seven) with

16 | effect (Success x) k -> perform (Success x)

17 | effect (Failure _) k -> () (* Omitting Failure 500 *)

18 | _ -> ()

19 ) xs; (* iterate the lambda elements from xs *)

20 perform (Failure 404)

21 with | x -> x | effect (Success r) k -> r (* Leaking Failure 404 *)

Fig. 25. McCarthy’s Locally Angelic Choice Operator

This example is non-trivial as it involves nested handlers with higher-order functions; heap-
manipulating behaviors in the continuation; performing effects while handling effects; encoding
exceptions using effects; and last but not least, reasoning is also required on the list data structure.

We present the specifications for handle and the key predicate definitions in Fig. 26. Recursively
defined predicate containRetTrue takes a list xs, uses a Boolean variable r to denote if there exists an
element from the list xs which equals to true, and uses an integer p to denote the position of such
an element. In case there isn’t such an element, p equals the length of the list. The specification
for handle indicates that if there exists one element in a given list xs, that equals to true, then
it returns 7, and the counter is increased by the position of the value, p; otherwise, it carries an
unhandled effects (Failure 404) as the final result. From the specification, we can see that the (Failure

3https://okmij.org/ftp/ML/ML.html#amb
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containRetTrue(GB, ?, A ) = ens[r] xs=[] ∧ p=0 ∧ r=false

∨ ∃h, t · ens[r] xs=h::t ∧ h=true ∧ p=1 ∧ r=true

∨ ∃h, t, p′ · ens[r] xs=h::t ∧ h=false ∧ p=p′+1 ∧ containRetTrue(t, p′, r)

List .iter (5 , GB, A ) = ens[r] xs=[] ∧ r=() ∨ ∃h, t · ens xs=h::t ; 5 (ℎ, ()) ; !8BC .8C4A (5 , C, A )

0<1 (GB, 2>D=C4A, A ) = ∃b ·Choose(GB, 1) ; ∃z · req counter ↦→z ens[r] counter ↦→z+1 ∧ r=b

5 (GB, 2>D=C4A, A ) = ∃b ·0<1 (GB, 2>D=C4A, 1) ; (ens[r] b=true∧ r=7 ∨ ens b=false ; Failure(500, A ))

ℎ0=3;4 (GB, 2>D=C4A, A ) = ∃z, p, b · req counter ↦→z ∧ containRetTrue(xs, ?, 1) ;

(ens[r] counter ↦→z+p∧ b=true∧ r=7 ∨ ens counter ↦→z+p∧ b=false ; Failure(404, A ))

Fig. 26. Specification for the handle Function and Deployed Predicate definitions

500) effects possibly performed by f – indicate the failure of individual attempts – will be omitted
by the handler at line 17, whereas (Failure 404) effects performed in the handler at line 20 may
escape the handle function, to indicate that there is no element in xs which equals to true.

7.2 Experimental Results

The benchmark programs in Table 1 are based on the examples from various sources 4. More
specifically, program 1 is taken and revised from a Memory Cell with Exchange example in the
prior work [de Vilhena and Pottier 2021], to further model different operations with a state monad,
including read, write, exchange values, and applications of their combinations. Programs 3 and
7 are originally from the multicont library, which provides practical examples for multi-shot
continuations. Program 5 revises program 3 by changing the handler to be shallow. Programs 4 and
6 demonstrate the usages of lemmas for left recursive functions in both deep and shallow handlers.
Program 2 is newly created in this work for feature diversity.

Table 1. Experimental Results.

# Program Ind MultiS ImpureC HO LoC LoS Total(s) AskZ3(s)

1 State monad ✗ ✗ ✓ ✗ 126 16 8.54 6.21

2 Inductive sum ✓ ✗ ✓ ✗ 41 11 1.68 1.28

3 Flip-N (Deep Right Rec) (Fig. 7) ✓ ✓ ✓ ✗ 39 10 2.09 1.52

4 Flip-N (Deep Left Rec) ✓ ✓ ✓ ✗ 45 13 2.03 1.53

5 Flip-N (Shallow Right Rec) ✗ ✓ ✓ ✗ 37 11 5.08 3.18

6 Flip-N (Shallow Left Rec) ✓ ✓ ✓ ✗ 64 23 6.75 4.26

7 McCarthy’s amb operator (Fig. 25) ✓ ✓ ✓ ✓ 109 45 7.71 5.34

Total - - - - 461 129 33.88 23.32

In Table 1, columns LoC and LoS record the lines of code and lines of specification, respectively.
The column Total sums up the time for forward reasoning and entailment checking. The column
AskZ3 records the time consumed by the Z3 solver during the whole verification process. Times are
measured in seconds. Although forward reasoning and entailment checking are mostly automated,
we show that the verification is non-trivial by labeling the programs with features: Ind indicates

4Mainly https://github.com/dhil/ocaml-multicont and https://v2.ocaml.org/manual/effects.html.
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whether the proof is inductive, MultiS means if the program uses multi-shot handlers, ImpureC

indicates if there exist heap-manipulation operations in the continuations. Lastly, HO indicates if
the program is higher-order, i.e., function inputs or outputs are of function type.

As shown, for 461 lines of code in total, our verification system intakes 129 lines of specifications,
with an average LoS/LoC ratio of 28%. For the time consumption, majority of the time is consumed
by the Z3 solving 5 – taking up 68.8% (23.32/33.88) of the total verification time. To the best of
the authors’ knowledge, this work is the first that provides verification solutions for the given
benchmark and supports automated proofs, demonstrating the feasibility of ESL. Due to space
limitation, we demonstrate the verification for programs 1, 2, 4, 5, and 6 in Appendix C [TR 2024].

8 Related Work

In this section, we discuss related works on the reasoning of algebraic effects and delimited control,
applications for multishot continuations, and other structured specifications.

Reasoning about Algebraic Effects and Delimited Control. For decades, monads [Moggi
1989; Wadler 1990] have dominated the scene of functional programming with effects. The recent
popularization of algebraic effects and handlers [Bauer and Pretnar 2015; Plotkin and Pretnar 2009]
promises to change the landscape. To support resumption, an effect handler has access to the
continuation at the point of effect invocation. Thus, algebraic effects and handlers provide a form of
delimited control operators, which have long been used to encode effects [Danvy 2006]. In monads,
the effectful behavior is defined in bind and return, statically determining the behavior inside the
do block. Whereas the behaviors of performing algebraic effects are determined dynamically by the
encompassing handlers, which gives greater flexibility in the composition of effectful code, but it
also requires additional reasoning to regulate the composed behaviors.

Many prior works study the semantics of effects and effect handlers in a pure setting. For instance,
Plotkin and Pretnar [2008] propose a logic to reason about the equality of computations in a calculus
with effects but no handlers. They later introduce effect handlers as an internal way of giving
meaning to effects [Plotkin and Pretnar 2013] and discuss a notion of correctness whereby a handler
is correct if it satisfies an intended equational theory. In addition, there is also a bulk of work on
temporal verification for algebraic effects. For example, Gordon [2020] are concerned with infinite-
state higher-order programs with control operators using type and effect systems, and it defines a
framework for sequential effects with tagged control operators akin to abort and call/cc, capturing
temporal safety properties. Song et al. [2022] propose a trace-based logic for practical automated
temporal verification of effect handlers. Closely related are verification works for delimited control
operators and properties beyond the safety and liveness of individual programs. Kiselyov et al.
[2021] recover equational reasoning in the presence of effect handlers. Sekiyama and Unno [2023]
present a type-and-effect system for shift0/reset0 [Materzok and Biernacki 2011] which reasons
about the traces that continuations generate, supporting liveness reasoning. Afterward, a follow-up
work [Kawamata et al. 2024] proposes a refinement type system for languages with algebraic effects
and handlers. These works typically avoid heap-manipulating behaviors. To support heap-based
programs, Delbianco and Nanevski [2013] propose �))22 , a separation logic for calculus with
dynamically allocated mutable state and an algebraic variant of call/cc and throw, but did not
provide support for delimited continuations. Their solution also uses “large footprint” assertions,
and does not have the frame rule, which means that it imposes reasoning about the entire heap.

5For better precision, some pre-analysis and encoding are carefully designed, which query Z3 additionally to incorporate

the multiplication operator in program 2 and the power operator used in programs 3-4.
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The current state-of-the-art for verifying imperative behaviors in algebraic effects and handles
is [de Vilhena and Pottier 2021]. It specifies program behaviors using separation logic and client-
handler interactions in the form of protocols, which globally define the effects that clients may
perform and the replies they may receive from handlers. A similar protocol-based solution is
used in Cameleer [Pereira and Ravara 2021; Soares and Pereira 2023], which encodes effects as
WhyML exceptions and uses defunctionalization to represent higher-order continuations. However,
these solutions are restricted to one-shot continuations. Subsequently, Maze [de Vilhena 2022]
extends Hazel [de Vilhena and Pottier 2021] to multi-shot resumption with impure continuations,
but restricting frame rule to only program codes without unhandled effects. These restrictions
motivate our work, and we propose ESL to fill this gap by naturally supporting unrestricted handlers
with heap-based continuations under fully modular verification. As a final note, protocol-based
solution uses global assumptions on handlers to provide explicit (or early) interpretation for each
of the algebraic effects. In theory, this explicit approach could help simplify the reasoning needed
for algebraic effects. However, in reality, it also leads to restrictions on the types of continuations
that can be used or the type of Hoare rules that can be relied on for programs with algebraic effects.
In contrast to protocol-based approach, our solution models try-catch handlers separately from
effect invocations, and delays the interpretation of the algebraic effects until try-catch handlers
are defined and where the scope of the continuation(s) would also become known. It would be
interesting to explore how the benefits from both these approaches could be combined.

Implementations of Algebraic Effects and Handlers. Effect handlers are finding their way
into research programming languages such as Eff [Bauer and Pretnar 2015, 2020], Effekt [Brachthäuser
and Schuster 2017; Brachthäuser et al. 2020], Frank [Lindley et al. 2017], Koka [Leijen 2012, 2014,
2016], as well as into mainstream programming languages such as OCaml 5 [Sivaramakrishnan
et al. 2021], and Scala 3 [Turbolift 2024]. Our solution is well-placed to provide stronger proof
techniques for these significant efforts in language implementation/extension.

Applications of Multishot Continuations. Most effects may be implemented using one-shot
continuations [Bruggeman et al. 1996]. Two exceptions are i) to implement a Unix-style asynchro-
nous fork primitive [Leijen 2017]; and ii) nondeterminism. The latter is useful in backtracking,
probabilistic programming [Nguyen et al. 2022]6, and model checking7; as multi-shot handlers
naturally express the branching points in search. While backtracking may be expressed by lifting
client programs to asymmetric coroutines [de Moura and Ierusalimschy 2009] (closely related
to one-shot continuations [Kawahara and Kameyama 2020]), this approach is not modular and
does not allow for the creation of abstractions, as effects do. Moreover, nondeterminism may be
implemented by throwing exceptions and saving enough state to replay to branching points [Koppel
et al. 2018], but this approach incurs runtime overhead from repeated computations, and it assumes
the absence of side effects. In contrast, the main advantages of multi-shot continuations are that
they simplify the implementation of complex algorithms and generally perform better by incurring
more memory overheads instead.

Verifying Higher-Order Imperative Programs. An early approach for reasoning about higher-
order imperative programs in pre/post Hoare logic was proposed by Honda et al. [Yoshida et al.
2007]. Our work drew early inspiration from this line of work, and have now extended it to take
into account algebraic effects, try-catch handlers and continuations. Our current solution is also
built on top of the staged specification mechanism [Foo et al. 2023, 2024] that we have recently
proposed to support formal reasoning of imperative higher-order programs. With this new work,

6https://github.com/Arnhav-Datar/EffPPL
7https://github.com/ocaml-multicore/dscheck
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we have now extended it to handle algebraic effects, showed how delimited continuations can be
captured via staged flows and modelled try-catch logic reduction in a general but precise manner.

9 Conclusion

This work is mainly motivated by how to modularly specify and verify heap-manipulating programs
with multi-shot effect handlers. We present an Effectful Specification Logic to write compact and
generic specifications for target programs. Our contributions are manifold: we define the forward
reasoning rules for a core language, we devise a set of reduction rules to calculate the heap-
manipulating behaviors for effect handlers, where zero-/one-/multi-shot continuations coexist. We
prototype and automate the proposal, present experimental results, and demonstrate nontrivial
and practical case studies to show feasibility. To the best of the authors’ knowledge, this work is
the first that lays the foundation for a practical verification framework that is capable of modeling
arbitrary imperative higher-order programs with algebraic effects and unrestricted handlers.

Data Availability

The source code of the tool, the dataset, and the appendix are available from [Zenodo 2024].
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