
Specification and Verification for 

Unrestricted Algebraic Effects and Handling

Yahui Song, Darius Foo, Wei-Ngan Chin

4th Sep @ ICFP 2024, Milan, Italy

1



User-defined Effects and Handlers 

Example taken from “Effect Handlers in Multicore OCaml” slides by KC Sivaramakrishnan. 

This prints: 0  1  2  3  4

2



Motivation Example

• Zero-shot handlers: abandon the continuation, just like exception handlers; 

• One-shot handlers: resume the continuation once, the assertion on line 8 succeeds; 

• Multi-shot handlers: resume the continuation more than once, the assertion on line 8 fails.

3



Existing verification techniques:
Ø multi-shot continuations + pure setting, e.g. [Song et al. 2022];
Ø heap manipulation + one-shot continuations, e.g. [de Vilhena and Pottier 2021];

Ø multi-shot + heap-manipulation, under a restricted frame rule, e.g. [de Vilhena 2022].

Motivation Example

4



Protocol Based Approach [de Vilhena and Pottier 2021]

• Hazel & Maze: Model client-handler interactions in the form of protocols

• Globally define the effects that clients perform and the replies they receive from handlers

• Global assumptions to provide explicit (or early) interpretation effects

5

https://cambium.inria.fr/~fpottier/publis/de-vilhena-pottier-sleh.pdf


• Fully Modular Per-Method Verification (no global assumption)

• Sequencing, j1 ; j2 

• Uninterpreted relations for unhandled effects and unknown functions, E(x, r)
• Reducible try-catch logic constructs

• Normalization: compact each sequence of pre/post stages, via bi-abduction

• Use re-summarization (lemma) when handling recursive generated effects

result

input

Our Solution: Effectful Specification Logic (ESL)

6



We propose ESL 

7



We propose ESL 

Bi-abduction:
∃ z; req x→z;
     ens x→z+1; 
∃ b; req x→b ∧ b=1  

8



We propose ESL 

Bi-abduction:
∃ z; req x→z ∧ z+1=1;
     ens x→z+1 

9



Try-Catch Reduction (Examples)

10



Try-Catch Reduction (Examples)

11



Intuition: 
Ø Explicit access to continuation
Ø Modular verification: 
• try-catch reduction
• normalization via bi-abduction 

Try-Catch Reduction (Examples)

12



• The base case:

• When handling an effect, first reason about the behaviours of its continuation

• Instantiate the high-order predicate k using the continuation’s specification 

Try-Catch Reduction (Selected Rules)

13



• The base case:

• When handling an effect, first reason about the behaviours of its continuation

• Instantiate the high-order predicate k using the continuation’s specification 

Try-Catch Reduction (Selected Rules)

Binding the effect free 
continuation to k 14

effect-free (wrt Hɸ) after # 



Higher-Order Function meets Unresolved Try-Catch Construct

Keep the try-catch constructs 

in the specification, which allows

modular verification.

Instantiate the

unknown function

Reducing the

try-catch construct

15



Inductive Proofs via Lemmas

n=1, counter = 2, res = 1

n=2, counter = 6, res =1

n=3, counter=14, res =1

…

Conjunct each Flip result

16



Inductive Proofs via Lemmas

n=1, counter = 2, res = 1

n=2, counter = 6, res =1

n=3, counter=14, res =1

…

Conjunct each Flip result

Sum up how many back tracking branches leads to all true  17



Inductive Proofs via Lemmas

n=1, counter = 2, res = 1

n=2, counter = 6, res =1

n=3, counter=14, res =1

…

… , counter = 2n+1-2, res=1

18



Inductive Proofs via Lemmas

19



Inductive Proofs via Lemmas

• Proving via applying lemmas 
• Lemmas are proved based on:

ü Try-catch reduction 
ü Unfolding and rewriting (entailment rules)

20



Implementation and Evaluation
• 5K LoC on top of OCaml 5

• Benchmark programs with features: (Ind) proof is inductive, (MultiS)multi-shot 
handlers, (ImpureC) impure continuations, (HO) program is higher-order. 

LoS/LoC < 30% 21



Summary
ü  Scope: Zero/one/multi-shots + impure continuations, deep/shallow handlers, left/right recursion

ü  Effectful Specification Logic: Staged specifications + unhandled effects + try-catch logic constructs

ü  Hoare-style Verifier: ML-like language + imperative higher-order + algebraic effects.

ü  The Back-end Checker for ESL: Normalization rules + reduction process of try-catch constructs.

ü  Prototype (Multicore OCaml): Proven correctness, report on experimental results, and case studies.

22



Take Away: 

Summary

1) Try not to assume, for both HO functions and effects!

2) Staged logic + try-catch enable modular specifications without global assumptions (protocols).

3) Explicit access to the continuations, which can be composed as needed.

23

I am currently on the academic job market, looking for research positions!
Thanks for listening!

ü  Scope: Zero/one/multi-shots + impure continuations, deep/shallow handlers, left/right recursion

ü  Effectful Specification Logic: Staged specifications + unhandled effects + try-catch logic constructs

ü  Hoare-style Verifier: ML-like language + imperative higher-order + algebraic effects.

ü  The Back-end Checker for ESL: Normalization rules + reduction process of try-catch constructs.

ü  Prototype (Multicore OCaml): Proven correctness, report on experimental results, and case studies.


