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ABSTRACT
SQL is a widely adopted programming language for relational

databases. Its ability to concisely process data sets makes it suitable

as a complementary construct for data analysis in general-purpose

programming languages. This work presents SelectML, which inte-

grates the Select Query capabilities directly into the Ocaml language,

where a query is a first-class language construct. Query expressions

are in declarative syntax, where programmers can perform filtering,

ordering, and grouping operations on data sets with a minimum of

code. SelectML retrofits the queries into pure OCaml, based on the

formally defined translation schema. Our implementation allows

SelectML to be a flexible framework for customizing the types of in-

puts, outputs and operations of the queries. SelectML deploys query
plan optimizations to make query executions more efficient. We

also discuss the potential of connecting to databases from SelectML.
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1 INTRODUCTION
SQL (Structured Query Language) is a declarative programming lan-

guage widely adopted in modern relational databases for managing,

storing, and manipulating data. The Select Query is the most com-

mon operation in SQL, used to retrieve data from the databases and

perform computations on the data. The common Select Query con-

sists of clauses including SELECT, FROM, WHERE, GROUP BY, HAVING,
and ORDER BY. With Select Queries, users can specify expected

results without giving detailed computation steps. However, for
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databases to execute a Select Query, a precise sequence of instruc-

tions has to be given instead of a declarative specification. The

query plan (or execution plan) is an imperative language that is

automatically generated by databases to describe the concrete steps

to achieve the query specification. Databases are also responsible

for finding the optimal query plan for a query by some given criteria

[8] [15] such as soundness and performance.

Most SQL databases support a query plan level optimization for

the Select Query, which may reduce the original query’s execu-

tion time, space consumption, or complexity. Such techniques can

bring benefits to general-purpose programming languages, which

are equipped with Select Query constructs, to enable a state-of-art

level query plan optimization. For example, some functional lan-

guages like Haskell and Scala support a syntactic sugar called list
comprehension for specifying the expected list of data in a declara-

tive way similar to the Select Query.

On the other hand, since the Select Query conforms well with

the functional programming paradigm by working on immutable

data, it seems to be an excellent complementary to data analysis for

languages, such as OCaml, that lack a similar language construct.

Therefore, in the paper, we present SelectML, as a language front-
end on top of OCaml (or OCaml + Select Expression per se), with

support of the Select Expression as a new language construct for

efficient data analysis.

1.1 Declarative Data Processing
Imagine a scenario, we have a list of food orders for the past few

years, and we want to sort the monthly incomes in a decreasing

order for the year 2021. In OCaml, we might write the query as:

1 type order = { id: int; price: float; month: string }
2

3 let group f l =
4 let eq a b = compare (f a) (f b) = 0 in
5 List.to_seq l |> Seq.group eq
6 |> Seq.map List.of_seq |> List.of_seq
7

8 let income_by_month : order list -> (string * float) list =
9 fun orders -> orders
10 |> List.filter (fun o ->
11 o.month >= "2021-01" && o.month <= "2021-12")
12 |> List.sort (fun a b -> compare a.month b.month)
13 |> group (fun o -> o.month)
14 |> List.map (fun l ->
15 List.fold_left
16 (fun (m, income) o -> (m, o.price +. income))
17 ((List.hd l).month, 0.0) l)
18 |> List.sort (fun (_, s1) (_, s2) -> compare s2 s1)

Figure 1: Data Transformation in a Functional Manner

Although the process of data transformation is clearly expressed

in a functional manner, shown in Figure 1, it can be simplified with

the support of Select Queries. We can rewrite the code in a more

declarative and concise way by using the Select Expression, shown
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in Figure 2. It is not hard to observe that it’s much easier to specify

the expected result using SQL, especially for programmers who are

familiar with SQL databases or working in data analysis.

1 let income_by_month : order list -> (string * float) list =
2 fun orders ->
3 SELECT o.month, {sum o.price} FROM o <- orders
4 WHERE o.month >= "2021-01" && o.month <= "2021-12"
5 GROUP BY o.month ORDER BY {sum o.price} DESC

Figure 2: Data Transformation using Select Expression

In this work, we focus on in-memory computation, where all

the calculations are entirely in computer memory (e.g., in RAM).

We discharge the possible interactions with the databases using the

standard Ocaml libraries, such as ‘ocaml-caqti’ [4].

1.2 System Overview
SelectML is a SQL language extension of OCaml, which is imple-

mented by modifying the OCaml compiler front-end (version 4.14),

particularly by extending the parser to recognize the Select Expres-

sion, supporting the typing/translation of the Select Expression to

the compiler intermediate representation.

Source Program

Parsing
−−−−−→ Parsetree

Typing
−−−−−→ Typedtree

Translating
−−−−−−−−→ Lambda

Figure 3: An Overview of OCaml Frontend

Figure 3 gives an overview of the compilation phases in the

OCaml frontend. The front end takes the OCaml source program

as the input. Firstly, in the parsing phase, the source program is

parsed into the Parsetree (i.e., the abstract syntax tree). Secondly, in

the typing phase, the Parsetree is annotated with type expressions

and becomes Typedtree (the typed version abstract syntax tree).

Lastly, the Typedtree is translated to the Lambda intermediate

representation and passed to the OCaml back-end for generating

bytecode and native code.

Parsetree


OCaml Expression

Typing
−−−−−→ Typedtree

Select Expression

Type Check
−−−−−−−−→
& Planning

Query Plan

Translating
−−−−−−−−→ Typedtree

Figure 4: An Overview of SelectML

As shown in Figure 4, SelectML works by adding the Select Ex-

pression as a new language construct to the Parsetree. For other

OCaml constructs, they are typed to Typedtree just as usual, while

the phase for the Select Expression is different. The query plan, an

imperative language that describes execution steps of a declarative

query, is generated after type-checking of Select Expression. Then

the query plan is optimized and translated to the plan-free Type-

dtree. The constructs and steps marked as darkred are our main

contributions.

2 LANGUAGE DESIGN
This section presents the design decisions of SelectML. SQL state-

ments are categorized into four groups: DQL (Data Query Lan-

guage), DDL (Data Definition Language), DML (Data Manipulation

Language), and DCL (Data Control Language) [23]. DQL, repre-

sented by SELECT, is used to specify the expected results from

tables in the database. DDL, represented by CREATE,ALTER, DROP, is
used to define the schema of databases, tables, indexes, etc. DML,

represented by INSERT, UPDATE, DELETE, is used for adding, modi-

fying, and deleting data in databases. DCL, represented by GRANT,
REVOKE, is used to control the access to the database.

It is easy to find correspondence for DDL and DML in general-

purpose languages. For example, variable, module declarations are

analogous to CREATE command in DDL, assignments modifying

the data are analogous to INSERT, UPDATE commands. DCL does

not have correspondence, as access control is not involved in most

programming languages. SELECT queries, as a representative for

DQL, will be retrofit to pure OCaml, as the main focus of this work.

2.1 Features
The retrofitted Select Query in SelectML is called the Select Ex-

pression. It can be used exactly the same way as other OCaml

expressions, i.e. as function arguments, return values, or operands

to input operators, shown in Figure 5.

1 (* as arguments *)
2 f 123 (SELECT x FROM x <- xs)
3

4 (* as return values *)
5 let g xs = SELECT x FROM x <- xs
6

7 (* as operands *)
8 x :: SELECT y FROM y <- ys

Figure 5: Usages of the Select Expression

The Select Expression provides a declarative manner of speci-

fying the expected result. It covers common operations for data

processing, including mapping, filtering, grouping, and sorting. As

programmers don’t need to worry about the concrete steps of the

data transformation, it gives the compiler spaces for query plan opti-

mizations. Currently, SelectML provides some core SQL features for

data processing [13], including FROM clause for inner joins, WHERE
and HAVING clauses for filtering, GROUP BY clause for grouping and

aggregation, and ORDER BY clause for sorting, cf. Section 2.2.

2.1.1 Features Not Covered. SQL provides various of syntax for

the Select Query, which corresponds a wide range of query sce-

narios. In SelectML, we focus on a core set of syntax. Those query

scenarios that need to be expressed using specialised SQL syntax

can be implemented using normal OCaml expressions as a fallback

option. This first scenario is the ability of query plan optimisations

is therefore reduced since there is an information loss in expressing

those specialised query syntax using a generalised syntax.

1 /* SQL */
2 SELECT ... WHERE EXISTS (SELECT ...)
3 SELECT ... WHERE col IN (SELECT ...)

1 (* SelectML *)
2 SELECT ... WHERE List.length (SELECT ...) > 0
3 SELECT ... WHERE List.mem col (SELECT ...)

Figure 6: Sub-queries

Figure 6 gives examples of the information loss of using usual

OCaml expressions. Mainstream databases can optimize the sub-

queries into semi-joins at the plan level knowing the meaning
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of syntax EXISTS and IN. However, currently, SelectML can only

express the same logic fallback to OCaml. Thus the compiler does

not know the semantics of List.length and List.mem, thereby
cannot perform optimization on these sub-queries. Figure 7 gives

an another example of the information loss. The logic for common

table expressions (also known as WITH clause) is expressed with

let in syntax in OCaml. Other features absent in SelectML, like
outer joins, window functions, will be discussed in Section A.

1 /* SQL */
2 WITH t AS (SELECT ...)
3 SELECT ...

1 (* SelectML *)
2 let t = SELECT ... in
3 SELECT ...

Figure 7: Common Table Expressions

2.2 An Informal Syntax
The syntax for SelectML are presented in Figure 8. SelectML expres-

sions consist of regular OCaml expressions including constants,

variables 𝑥 , tuples (𝑒1, . . . , 𝑒𝑛), list, and functions. On top of OCaml

expressions, there are two new syntactic constructs: 1) The Select

Expression 𝑞; 2) The aggregation {𝑒1 𝑒2} where 𝑒1 is the aggregate
function, and 𝑒2 is the argument.

Expressions 𝑒 ::= . . . | 𝑞 | {𝑒 𝑒 }
Select Expressions 𝑞 ::= SELECT [DISTINCT] 𝑒 [FROM 𝑠 ] [WHERE 𝑒 ]

[GROUP BY 𝑒 ] [HAVING 𝑒 ] [ORDER BY 𝑜 ]
Source Expressions 𝑠 ::= 𝑥 ← 𝑒 | (𝑥1, . . . , 𝑥𝑛) ← 𝑒 | 𝑠, 𝑠
Order Expressions 𝑜 ::= 𝑒 [ASC | DESC | USING 𝑒 ] | 𝑜, 𝑜

Figure 8: An Informal Syntax of SelectML

For a Select Expression 𝑞, the SELECT clause is mandatory, to-

gether with optional DISTINCT keyword, FROM, WHERE, GROUP BY,
HAVING and ORDER BY clauses. Details for each clause are elaborated
in the following sections. The capitalised keywords are chosen for

SelectML to avoid compatibility issues with existing codebases, as

variable names like from, desc have been frequently used in the

OCaml standard libraries and the compiler itself.

2.2.1 The FROM Clause. Input lists are specified in source expres-

sions 𝑠 in the FROM clause. The syntax for specifying the table alias

is changed in SelectML, by turning source AS 𝑥 to 𝑥 ← source, which
makes it easier to resolve parser conflicts. 𝑥 in source expressions

is a shorthand for 𝑥 ← 𝑥 . The type of source is expected to be

'a list. A direct comparison of the SQL syntax and SelectML is

given in Figure 9.

1 /* SQL */
2 SELECT x, y FROM xs AS x, ys AS y;

1 (* SelectML *)
2 SELECT x, y FROM x <- xs, y <- ys;;

Figure 9: Examples of the FROM Clause

2.2.2 The WHERE and HAVINGClauses. The WHERE and HAVING clauses
both function as a filter on the input data. The WHERE clause fil-

ters data coming from the FROM clause, while the HAVING clause is

designed to filter aggregated data from the GROUP BY clause.

1 SELECT x FROM x <- xs WHERE f x;;
2 SELECT {h x} FROM x <- xs HAVING g {h x};;

Figure 10: WHERE and HAVING Clauses in SelectML

Expressions behave as predicates in the WHERE and HAVING clauses,
which means f x, g {h x} in the examples (Figure 10) are expected

to have type bool. Notice OCaml does not allow NULL value, the

predicate can only be evaluated to true or false. But in SQL,

boolean values can be NULL. This is 2-value logic versus 3-value
logic, which are proved equivalent in terms of expressiveness [16].

2.2.3 The GROUP BY Clause and Aggregation. Expressions listed
in the GROUP BY clause serves as the group keys. The GROUP BY
clause is used to group those rows with the same group keys, and

aggregation is performed on each group using certain aggregate

functions (Figure 11). When there is aggregation in SELECT clause,

HAVING clause, or ORDER BY clause but with no GROUP BY clause,

the whole input will be viewed as one group.

1 /* SQL */
2 SELECT x, COUNT(y) FROM t GROUP BY x;

1 (* SelectML *)
2 SELECT x, {count y} FROM (x, y) <- t GROUP BY x;;

Figure 11: Examples of the GROUP BY Clause and Aggregation

In SQL, several common aggregate functions are provided by

default, i.e. AVG, COUNT, SUM, MIN, MAX. To help recognise aggregation
in SelectML, the syntax {𝑒1 𝑒2} is used to denote the application of

aggregate functions, where 𝑒1 is the aggregate function, and 𝑒2 is the

argument column. Some databases (e.g., PostgreSQL) support user-

defined aggregate functions, where users may supply the initial

state, the transition function, and the function to get the final result.

1 type ('a, 'b, 'c) aggfunc = 'c * ('c -> 'a -> 'c) * ('c -> 'b)
2 type (_, _) agg = Agg : ('a, 'b, 'c) aggfunc -> ('a, 'b) agg
3

4 val firstrow : ('a, 'a) agg
5 val agg_min : ('a, 'a) agg
6 val agg_max : ('a, 'a) agg
7 val count : ('a, int) agg
8 val sum : (float, float) agg
9 val avg : (float, float) agg

Figure 12: Aggregate Functions

1 val mkagg : 'c -> ('c -> 'a -> 'c) -> ('c -> 'b) -> ('a, 'b) agg
2

3 (* create an aggregate function *)
4 let count = mkagg 0 (fun n _ -> n + 1) (fun n -> n);;
5

6 (* usage inside Select Expression *)
7 SELECT {count x} FROM x <- [1;2;3];;
8

9 (* usage outside Select Expression *)
10 let Agg (init, update, final) = count in
11 final (List.fold_left update init [1;2;3])
12

13 (* invalid usage *)
14 let _ = {count [1;2;3]};;
15 Error: Standalone aggregate is not allowed

Figure 13: Usages of Aggregate Functions

SelectML supports user-defined aggregate functions by default.

As shown in Figure 12, predefined aggregate functions (i.e. agg_min,
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count, ...) have the type ('a, 'b) agg, which is now a built-in

type of the compiler. For an aggregation {f x}, f is expected to

have type ('a, 'b) agg; x is expected to be in type 'a; the result
type should be 'b.

Function mkagg is for creating user-defined aggregate functions

(Figure 13), users have to supply the initial state (init), the tran-
sition function (update), and the result function (final). Usage
of the syntax {𝑒1 𝑒2} is only allowed within the context of Select

Expression (line 6 to 7), otherwise, an error will be reported (line

13 to 15). Aggregate functions can be used manually outside the

Select Expression, cf. line 9 to 11 in Figure 13.

2.2.4 The ORDER BY Clause. The ORDER BY clause is used to sort

the data after the HAVING clause is handled. The order expressions 𝑜
in the ORDER BY clause serve as the sorting key. An order expression
can be given an optional order direction, which is either ASC for

ascending order, DESC for descending order, or USING 𝑒 for using 𝑒
as the compare function. The compare function is expected to have

type 'a -> 'a -> int which is the same as the stdlib function

compare. Ascending order is assumed by default if no direction is

specified. In Figure 14, the output data will be sorted by x in the

ascending order, then by y in the odd-number-first order. The result

is shown on line 10.

1 let odd_first a b =
2 let x = a mod 2 = 0 in
3 let y = b mod 2 = 0 in
4 compare x y;;
5

6 SELECT x, y
7 FROM (x, y) <- [("a", 2); ("a", 3); ("b", 4); ("b", 5)]
8 ORDER BY x ASC, y USING odd_first;;
9

10 -:(string * int) SelectML.src=[("a",3); ("a",2);("b",5);("b",4)]

Figure 14: Examples of the ORDER BY Clause

2.2.5 The SELECT Clause and Typing. Expressions listed in the

SELECT clause become the output data. If keyword DISTINCT is

present, then duplicate rows will be removed from the output. In

general cases, if the expression in the SELECT clause has type 'a,
then the type of the Select Expression will be 'a list, cf. Figure
15 from line 1 to 8. Nevertheless, when it can be determined that

there is exactly one row in the output, cf. Figure 15 from line 10 to

17, it is unnecessary to put the result into a list, hence the result

type will be 'a instead of 'a list.

1 SELECT x FROM x <- [1;1;2;2;3;3];;
2 - : int list = [1; 1; 2; 2; 3; 3]
3

4 SELECT DISTINCT x FROM x <- [1;1;2;2;3;3];;
5 - : int list = [1; 2; 3]
6

7 SELECT y, x FROM (x, y) <- [("a", 1); ("b", 2)];;
8 - : (int * string) list = [(1, "a"); (2, "b")]
9

10 (* without FROM, WHERE, and HAVING *)
11 SELECT x, y;;
12 SELECT x, y GROUP BY z;;
13 SELECT x, y ORDER BY z;;
14

15 (* aggregation without GROUP BY, WHERE, and HAVING *)
16 SELECT {count x} FROM x <- t;;

Figure 15: Examples of the SELECT Clause

3 SEMANTICS AND COMPILATION
To provide a more reliable code transformation for the Select Ex-

pression, in this section, we formalise the semantics of SelectML.

Expressions 𝑒 ::= . . . | 𝑞 | {𝑒 𝑒 } | P
Select Expressions 𝑞 ::= SELECT 𝑙 | SELECT DISTINCT 𝑙

Select Clauses 𝑙 ::= 𝑒 𝑜

From Clauses 𝑓 ::= 𝜖 | FROM 𝑠
Source Patterns 𝜒 ::= 𝑥 | (𝑥1, . . . , 𝑥𝑛)

Source Expressions 𝑠 ::= 𝜒 ← 𝑒 | 𝑠, 𝑠
Where Clauses 𝑤 ::= 𝑓 | 𝑓 WHERE 𝑒

Group-by Clauses 𝑔 ::= 𝑤 | 𝑤 GROUP BY 𝑒
Order-by Clauses 𝑜 ::= 𝑔 | 𝑔 ORDER BY 𝑒 USING 𝑒

Query Plans P ::= E | D𝜒 (𝑒) | 𝜎𝑒 (P) | Π𝑒/𝜒 (P) |
P × P | 𝑒G𝑒 (P) | 𝑒S𝑒 (P) | U(P)

Figure 16: A Formal Syntax

Comparing to Figure 8, a more formal syntax is given in Figure

16. Here, the HAVING clause is left out for simplicity, Because it

produces a selection plan 𝜎 just as the WHERE clause, only that it is

handled after the GROUP BY clause and before the ORDER BY clause.

For the ORDER BY clause, only USING 𝑒 is preserved, as it is sufficient

to express the semantics of ASC and DESC.
Source Patterns 𝜒 can either be a variable 𝑥 , or a tuple of variables

(𝑥1, . . . , 𝑥𝑛). Since variables 𝑥 are also valid expressions, the symbol

𝜒 is to denote expressions which consist of variables in following

sections. Also for expediency, the operator ++ is used to indicate

the concatenation of two tuples:

(𝜒1, . . . , 𝜒𝑛) ++ (𝜒𝑛+1, . . . , 𝜒𝑚) = (𝜒1, . . . , 𝜒𝑚)
(𝑒1, . . . , 𝑒𝑛) ++ (𝑒𝑛+1, . . . , 𝑒𝑚) = (𝑒1, . . . , 𝑒𝑚)

Query plansP are a group of transient expressions, which will be

explained in Section 3.2. A formal semantics of SelectML is provided
in Section 3.3. And the translation schema from query plans to

plan-free OCaml expressions is given in Section 3.4.

3.1 An Example
We reuse the example in Figure 2 to explain the handling of a Select

Expression, shown in Figure 17. Aggregation functions firstrow
and sum are predefined in Stdlib, of the types ('a,'a)agg and

(float,float)agg respectively. Function firstrow extracts the

first row from a group of identical rows, while function sum re-

turns the sum of a group of floating numbers. The Select Expres-

sion is firstly type-checked to determine the output type, which is

(string * float) list in this example.

1 type order = { id: int; price: float; month: string }
2

3 SELECT o.month, {sum o.price} FROM o <- orders
4 WHERE o.month >= "2021-01" && o.month <= "2021-12"
5 GROUP BY o.month ORDER BY {sum o.price} DESC

Figure 17: The Example of Select Expression

The generated query plan will be eventually translated to OCaml

expressions which is plan-free for real execution (see Section 3.4).

The code in Figure 18 shows a possible translation making use of

the primitives defined in module SelectML. The generated plan-

free OCaml expressions are guaranteed to be sound in type, as type

errors are already handled when typing the Select Expression.
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1 orders
2 |> SelectML.input
3 |> SelectML.filter (fun o ->
4 o.month >= "2021-01" && o.month <= "2021-12")
5 |> SelectML.map (fun o -> o.month, o.price)
6 |> SelectML.group (fun (__col_1, __col_2) -> __col_1)
7 (let Agg (init1, update1, final1) = Stdlib.firstrow in
8 let Agg (init2, update2, final2) = Stdlib.sum in
9 Agg ((init1, init2),
10 (fun (acc1, acc2) (x1, x2) ->
11 update1 acc1 x1, update2 acc2 x2),
12 (fun (acc1, acc2) -> final1 acc1, final2 acc2)))
13 |> let key (__col_1, __col_3) -> __col_3) in
14 SelectML.sort (fun a b -> compare (key b) (key a))
15 |> SelectML.output

Figure 18: The Example of Translated Code

3.2 Query Plans
The query plan is widely used in database implementations as a

way to describe the execution flow of Select Queries. In SelectML,
query plans are a group of transient expressions that are the output

of the planning phase and will be eventually translated to plan-free

OCaml expressions.

E Empty Source 𝜎𝑒 (P) Selection

D𝜒 (𝑒) Data Source Π𝑒/𝜒 (P) Projection

P1 × P2 Cartesian Product 𝑒G𝑒𝑎/𝜒 (P) Aggregation

U(P) Deduplication 𝑒S𝑒𝑓 (P) Sorting

Figure 19: Query Plans

A query plan denotes an abstract operation that will be per-

formed on the input data. The query plans listed in Figure 19 can

be categorized into three groups by their functionalities:

1) Providing data to outer query plans:
• E provides the empty data source.

• D𝜒 (𝑒) turns the expression 𝑒 into a data source and rename

the row of 𝑒 to 𝜒 . That said, the variables of 𝑒 can be referred

as 𝜒 in outer query plans.

• P1 × P2 returns the Cartesian product of plans P1 and P2,
and rename the new data source to 𝜙 (P1)++𝜙 (P2).

𝜙 (P) is defined as the name function for plan P. It returns a list
of names to which the columns have been renamed:

𝜙 (E) = () 𝜙 (𝜎𝑒 (P)) = 𝜙 (P)
𝜙 (D𝜒 (𝑒)) = 𝜒 𝜙 (Π𝑒/𝜒 (P)) = 𝜒

𝜙 (P1 × P2) = 𝜙 (P1) ++ 𝜙 (P2) 𝜙 (𝑒G𝑒𝑎/𝜒 (P)) = 𝜒

𝜙 (U(P)) = 𝜙 (P) 𝜙 (𝑒S𝑒𝑓 (P)) = 𝜙 (P)

2) Performing actions to rows:
• 𝜎𝑒 (P) performs a selection on rows that evaluate to true
under the predicate 𝑒 from the inner plan P.
• 𝑒S𝑒𝑓 (P) sorts the rows using the compare function 𝑒𝑓 on

the key 𝑒 from the plan P.
• U(P) removes duplicate rows from the plan P.

3) Performing actions to columns:
• Π𝑒/𝜒 (P) projects the rows from P to the expression 𝑒 , and

rename the columns to 𝜒 .

• 𝑒G𝑒𝑎/𝜒 (P) groups the rows from P on the key 𝑒 , then per-

forms aggregations on the groups using aggregate functions

𝑒𝑎 , and finally rename the aggregated columns to 𝜒 .

3.3 Typing and Planning
Queries can be statically typed in database PostgreSQL, where the

types of columns in the Select Query are determined ahead of the

execution. Operations like comparing columns with distinct types

are not allowed, e.g. a=b reports error for column a having type

int and b having type varchar. Queries can also be dynamically

type in MySQL and SQLite, where the types are checked at runtime.

SelectML is statically typed along with the Select Expression. We

present the operational semantics here to describe the typing and

planning rules for the Select Expression, shown in Figure 20.

⊢ 𝜒 : 𝜏 ⇒ Δ

Var

⊢ 𝑥 : 𝜏 ⇒ {𝑥 : 𝜏 }

Tuple

⊢ 𝑥1 : 𝜏1 ⇒ Δ1 . . . ⊢ 𝑥𝑛 : 𝜏𝑛 ⇒ Δ𝑛

⊢ (𝑥1, . . . , 𝑥𝑛) : (𝜏1, . . . , 𝜏𝑛) ⇒ Δ1 ⊎ . . . ⊎ Δ𝑛

Γ ⊢ 𝑒 : 𝜏 ⇒ 𝑒′

Aggregate

Γ ⊢ 𝑒1 : (𝜏1, 𝜏2) agg⇒ 𝑒′
1

Γ ⊢ 𝑒2 : 𝜏1 ⇒ 𝑒′
2

Γ ⊢ {𝑒1 𝑒2 } : 𝜏2 ⇒ {𝑒′
1
𝑒′
2
}

Select

Γ ⊢ 𝑙 : 𝜏 ⇒ P, _
Γ ⊢ SELECT 𝑙 : 𝜏 ⇒ P

Select-Distinct

Γ ⊢ 𝑙 : 𝜏 ⇒ P, _
Γ ⊢ SELECT DISTINCT 𝑙 : 𝜏 ⇒ U(P)

Γ ⊢ • : 𝜏 ⇒ P,Δ

From

Γ ⊢ 𝑠 : 𝜏 ⇒ P,Δ
Γ ⊢ FROM 𝑠 : 𝜏 ⇒ P,Δ

Source

Γ ⊢ 𝑒 : 𝜏 list⇒ 𝑒′ ⊢ 𝜒 : 𝜏 ⇒ Δ

Γ ⊢ 𝜒 ← 𝑒 : 𝜏 ⇒ D𝜒 (𝑒′),Δ

Cartesian-Product

Γ ⊢ 𝑠1 : 𝜏1 ⇒ P1,Δ1 Γ ⊢ 𝑠2 : 𝜏2 ⇒ P2,Δ2

Γ ⊢ 𝑠1, 𝑠2 : 𝜏1++𝜏2 ⇒ P1 × P2, (Δ1 ⊎ Δ2)

Where

Γ ⊢ 𝑓 : 𝜏 ⇒ P,Δ Γ,Δ ⊢ 𝑒 : bool⇒ 𝑒′

Γ ⊢ 𝑓 WHERE 𝑒 : 𝜏 ⇒ 𝜎𝑒′ (P),Δ

Select-Only

Γ ⊢ 𝑤 : _⇒ P,Δ Γ,Δ ⊢ 𝑒 : 𝜏 ⇒ 𝑒′

Γ ⊢ 𝑒 𝑤 : 𝜏 list⇒ Π𝑒′ (P),Δ
Order-By

Γ ⊢ 𝑤 : _⇒ P,Δ Γ,Δ ⊢ 𝑒1 : 𝜏1 ⇒ 𝑒′
1

Γ,Δ ⊢ 𝑒2 : 𝜏2 ⇒ 𝑒′
2

Γ,Δ ⊢ 𝑒𝑓 : ∀𝛼.𝛼 → 𝛼 → int⇒ 𝑒′
𝑓

Γ,Δ ⊢ expand-product(𝑒′
1
, 𝑒′

2
) ⇒ (𝜒1, 𝜒2), 𝑒𝜋

Γ ⊢ 𝑒1 𝑤 ORDER BY 𝑒2 USING 𝑒𝑓 : 𝜏1 list⇒Π𝜒
1
(𝜒

2
S𝑒′

𝑓
(Π𝑒𝜋 /(𝜒1++𝜒2 ) (P))),Δ

Group-By

Γ ⊢ 𝑤 : _⇒ P,Δ Γ,Δ ⊢ 𝑒1 : 𝜏1 ⇒ 𝑒′
1

Γ,Δ ⊢ 𝑒𝑔 : 𝜏𝑔 ⇒ 𝑒′𝑔
Γ,Δ ⊢ expand-aggregate(𝑒′

1
, 𝑒′𝑔) ⇒ 𝑒′′

1
, 𝜒𝑔, 𝜒𝑎, 𝑒𝑎, 𝜒𝜋 , 𝑒𝜋

Γ ⊢ 𝑒1 𝑤 GROUP BY 𝑒𝑔 : 𝜏1 list⇒ Π𝑒′′
1

(𝜒𝑔 G𝑒𝑎/𝜒𝑎 (Π𝑒𝜋 /𝜒𝜋 (P))),Δ
Group-Order-By

Γ ⊢ 𝑤 : _⇒ P,Δ Γ,Δ ⊢ 𝑒1 : 𝜏1 ⇒ 𝑒′
1

Γ,Δ ⊢ 𝑒2 : 𝜏2 ⇒ 𝑒′
2

Γ,Δ ⊢ 𝑒𝑔 : 𝜏𝑔 ⇒ 𝑒′𝑔 Γ,Δ ⊢ 𝑒𝑓 : ∀𝛼.𝛼 → 𝛼 → int⇒ 𝑒′
𝑓

Γ,Δ ⊢ expand-aggregate(𝑒′
1
, 𝑒′

2
, 𝑒′𝑔) ⇒ (𝑒′′1 , 𝑒′′2 ), 𝜒𝑔, 𝜒𝑎, 𝑒𝑎, 𝜒𝜋 , 𝑒𝜋

Γ,Δ ⊢ expand-product(𝑒′′
1
, 𝑒′′

2
) ⇒ (𝜒1, 𝜒2), 𝑒′𝜋

Γ ⊢ 𝑒1 𝑤 GROUP BY 𝑒𝑔 ORDER BY 𝑒2 USING 𝑒𝑓 : 𝜏1 list⇒
Π𝜒

1
(𝜒

2
S𝑒′

𝑓
(Π𝑒′𝜋 /(𝜒1++𝜒2 ) (𝜒𝑔 G𝑒𝑎/𝜒𝑎 (Π𝑒𝜋 /𝜒𝜋 (P))))),Δ

Figure 20: Typing and Planning

We use Γ to denote the environment of variable bindings and

Δ for the increment of bindings. A variable binding is like 𝜒 : 𝜏 ,
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where 𝜏 ranges over OCaml types. The judgement ⊢ 𝜒 : 𝜏 ⇒ Δ
indicates the variable bindings created by source pattern 𝜒 of type

𝜏 are described by Δ. A variable yields a single binding (rule Var),

while a tuple yields the union of its bindings (rule Tuple). Operator

is used to indicate the union of Δ1 and Δ2,

The judgement Γ ⊢ 𝑒 : 𝜏 ⇒ 𝑒 ′ indicates that in environment Γ
the expression 𝑒 of type 𝜏 is transformed to 𝑒 ′. The aggregation
{𝑒1 𝑒2} of type 𝜏2 is transformed to {𝑒 ′

1
𝑒 ′
2
} (rule Aggregate). If

there is no Select Expression present, the judgement Γ ⊢ 𝑒 : 𝜏 ⇒ 𝑒

holds as no transformation is performed.

The judgement Γ ⊢ • ⇒ P,Δ indicates that in environment Γ the
plan generated for clause • is P, and the bindings created by • are
described by Δ. The FROM clause can either generate a data source

D𝜒 (𝑒) and yield the bindings of the source patterns (rule Source)

or make a cartesian product of two data sources and combine their

bindings (rule Cartesian-Product). The Select Expression expects

its subclauses to have type 𝜏 , so the type of the Select Expression

becomes 𝜏 list (rule Select, Select-Distinct).
The WHERE clause requires that the predicate 𝑒 has type bool, and

produce a selection 𝜎𝑒 (P) (rule Where). A single SELECT clause

produces a single projection Π𝑒′ (P) (rule Select-Only). A SELECT
clause together with an ORDER BY clause yield a Π→S→Π se-

quence (rule Order-By). A SELECT together with a GROUP BY yield

a Π→G→Π sequence (rule Group-By). And when all three clauses

are present, we will get a Π→G→Π→S→Π sequence.

3.3.1 Auxiliary Functions. Auxiliary functions expand-product and
expand-aggregate are introduced to simplify the rules.

Function expand-product(𝑒)⇒𝜒, 𝑒𝜋 expands expression 𝑒 of a

product type (tuples, records, etc.) into 2 parts: i) a tuple of sub-

expressions 𝑒𝜋 ; and ii) a pattern 𝜒 used to restore the original

expression. For instance, the tuple (x+y, x-y) can be expanded to

a tuple of sub-expressions (x+y, x-y) and the pattern (c1, c2).
Similarly, the record {a = x+y; b = x-y} can be expanded to tu-

ple (x+y, x-y) and pattern {a = c1; b = c2}. The fresh vari-

ables c1, c2 function as the references for restoring the origi-

nal expression. That is to say, plan Π
(x+y, x-y)

(P) is equivalent to
Π (𝑐1,𝑐2) (Π(x+y, x-y)/(𝑐1,𝑐2) (P)) in terms of their computing results.

Code SELECT x+y, x-y FROM ... ORDER BY x-y will generate

the plan Π (𝑐1,𝑐2) (𝑐2Sasc (Π(x+y, x-y)/(𝑐1,𝑐2) (P))).
Function expand-aggregate(𝑒1, . . . , 𝑒𝑔)⇒(𝑒 ′

1
, . . .), 𝜒𝑔, 𝜒𝑎, 𝑒𝑎, 𝜒𝜋 , 𝑒𝜋

takes a list of expressions (𝑒1, . . . , 𝑒𝑔) as the input, where 𝑒𝑔 serves

as the group key, and (𝑒1, . . .) are the expressions in the SELECT and
ORDER BY clauses. Similar to expand-product, the outputs are: i) a
tuple of sub-expressions 𝑒𝜋 which are aggregation-free; ii) a pattern

𝜒𝜋 that is used to rename plan Π𝑒𝜋 (P); iii) a tuple of extracted ag-

gregate functions 𝑒𝑎 ; iv) a pattern 𝜒𝑎 to rename plan G𝑒𝑎 (P); v) an
aggregation-free expression 𝑒𝑔 that serves as the group key; and vi)

a list of expressions (𝑒 ′
1
, ...) that will restore the original expressions

(𝑒1, ...). For instance, if we let 𝑒1 = {count (x+1)} + 2 and 𝑒𝑔 = y,
expand-aggregate(𝑒1, 𝑒𝑔) will result in, 𝑒 ′

1
= 𝑐3 + 2, 𝜒𝑔 = 𝑐2, 𝜒𝑎 =

(𝑐3, 𝑐4), 𝑒𝑎 = (count, firstrow), 𝜒𝜋 = (𝑐1, 𝑐2), 𝑒𝜋 = (x+1, y). Code
SELECT {count(x+1)}+2, y FROM ... GROUP BY y will gen-

erateΠ (𝑐3+2,𝑐4) (𝑐2G(count,firstrow)/(𝑐3,𝑐4) (Π (x+1,y)/(𝑐1,𝑐2) (P))).When

𝑒𝑔 is not given, the function regresses to expand-aggregate(𝑒1, . . .)⇒
(𝑒 ′
1
, . . .), 𝜒𝑎, 𝑒𝑎, 𝜒𝜋 , 𝑒𝜋 .

3.3.2 Special Cases. The Select Expression does not always pro-

duce a list when there is exactly one row in the result. As shown in

Figure 21. Under any of the following circumstances:

1) the FROM clause is absent (Figure 22); or
2) there exists aggregation but the GROUP BY is absent (Figure 23),
with the absence of the WHERE clause and HAVING clause, the result

data will be a single value instead of a list. The sorting plan S
becomes useless in such scenario, so it can be safely removed.

1 SELECT 1, 2;; (* no FROM clause *)
2 - : int * int = (1, 2)
3

4 (* aggregation without GROUP BY *)
5 SELECT {count x} FROM x <- [1;2;3];;
6 - : int = 3

Figure 21: Special Cases of Select Expression

Empty

Γ ⊢ 𝜖 : unit⇒ E, ()

Select-Only’

Γ ⊢ 𝑤 : _⇒ E,Δ Γ,Δ ⊢ 𝑒 : 𝜏 ⇒ 𝑒′

Γ ⊢ 𝑒 𝑤 : 𝜏 ⇒ Π𝑒′ (E),Δ

Order-By’

Γ ⊢ 𝑤 : _⇒ E,Δ Γ,Δ ⊢ 𝑒1 : 𝜏1 ⇒ 𝑒′
1

Γ,Δ ⊢ 𝑒2 : 𝜏2 ⇒ 𝑒′
2

Γ,Δ ⊢ expand-product(𝑒′
1
, 𝑒′

2
) ⇒ (𝜒1, 𝜒2), 𝑒𝜋

Γ ⊢ 𝑒1 𝑤 ORDER BY 𝑒2 : 𝜏1 ⇒ Π𝜒
1
(Π𝑒𝜋 /(𝜒1++𝜒2 ) (E)),Δ

Group-By’

Γ ⊢ 𝑤 : _⇒ E,Δ Γ,Δ ⊢ 𝑒1 : 𝜏1 ⇒ 𝑒′
1

Γ,Δ ⊢ 𝑒𝑔 : 𝜏𝑔 ⇒ 𝑒′𝑔
Γ,Δ ⊢ expand-aggregate(𝑒′

1
, 𝑒′𝑔) ⇒ 𝑒′′

1
, 𝜒𝑔, 𝜒𝑎, 𝑒𝑎, 𝜒𝜋 , 𝑒𝜋

Γ ⊢ 𝑒1 𝑤 GROUP BY 𝑒𝑔 : 𝜏1 ⇒ Π𝑒′′
1

(𝜒𝑔 G𝑒𝑎/𝜒𝑎 (Π𝑒𝜋 /𝜒𝜋 (E))),Δ

Group-Order-By
′

Γ ⊢ 𝑤 : _⇒ E,Δ Γ,Δ ⊢ 𝑒1 : 𝜏1 ⇒ 𝑒′
1

Γ,Δ ⊢ 𝑒2 : 𝜏2 ⇒ 𝑒′
2

Γ,Δ ⊢ 𝑒𝑔 : 𝜏𝑔 ⇒ 𝑒′𝑔 Γ,Δ ⊢ 𝑒𝑓 : ∀𝛼.𝛼 → 𝛼 → int⇒ _

Γ,Δ ⊢ expand-aggregate(𝑒′
1
, 𝑒′

2
, 𝑒′𝑔) ⇒ (𝑒′′1 , 𝑒′′2 ), 𝜒𝑔, 𝜒𝑎, 𝑒𝑎, 𝜒𝜋 , 𝑒𝜋

Γ,Δ ⊢ expand-product(𝑒′′
1
, 𝑒′′

2
) ⇒ (𝜒1, 𝜒2), 𝑒′𝜋

Γ ⊢ 𝑒1 𝑤 GROUP BY 𝑒𝑔 ORDER BY 𝑒2 USING 𝑒𝑓 : 𝜏1 ⇒
Π𝜒

1
(Π𝑒′𝜋 /(𝜒1++𝜒2 ) (𝜒𝑔 G𝑒𝑎/𝜒𝑎 (Π𝑒𝜋 /𝜒𝜋 (E)))),Δ

Figure 22: No FROM clause

Select-Only”

Γ ⊢ 𝑤 : _⇒ P,Δ Γ,Δ ⊢ 𝑒 : 𝜏 ⇒ 𝑒′

Γ,Δ ⊢ expand-aggregate(𝑒′) ⇒ 𝑒′′, 𝜒𝑎, 𝑒𝑎, 𝜒𝑝𝑖, 𝑒𝜋

Γ ⊢ 𝑒 𝑤 : 𝜏 ⇒ Π𝑒′′ (G𝑒𝑎/𝜒𝑎 (Π𝑒𝜋 /𝜒𝜋 (P))),Δ

Order-By”

Γ ⊢ 𝑤 : _⇒ P,Δ Γ,Δ ⊢ 𝑒1 : 𝜏1 ⇒ 𝑒′
1

Γ,Δ ⊢ 𝑒2 : 𝜏2 ⇒ 𝑒′
2

Γ,Δ ⊢ 𝑒𝑓 : ∀𝛼.𝛼 → 𝛼 → int⇒ _

Γ,Δ ⊢ expand-aggregate(𝑒′
1
, 𝑒′

2
) ⇒ (𝑒′′

1
, 𝑒′′

2
), 𝜒𝑎, 𝑒𝑎, 𝜒𝜋 , 𝑒𝜋

Γ,Δ ⊢ expand-product(𝑒′′
1
, 𝑒′′

2
) ⇒ (𝜒1, 𝜒2), 𝑒′𝜋

Γ ⊢ 𝑒1 𝑤 ORDER BY 𝑒2 USING 𝑒𝑓 : 𝜏1 ⇒
Π𝜒

1
(Π𝑒′𝜋 /(𝜒1++𝜒2 ) (G𝑒𝑎/𝜒𝑎 (Π𝑒𝜋 /𝜒𝜋 (P))),Δ

Figure 23: No GROUP BY clause

3.4 Translation Schema
The semantics of the query plans mentioned in Section 3.2 can

be captured by the module SelectML, whose signature is listed in

Figure 24. type 'a t stands for the computation medium that will

be passed among primitives, while type 'a src controls the input
and output data type of the Select Expression. input and output are
used for transformation between 'a t and 'a src. Although the

type src and t are both defined as list, the types and primitives

can be changed to serve other data types (see Section 4).
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1 type 'a t = 'a list
2 val one : 'a t -> 'a
3 val singleton : 'a -> 'a t
4 val product : ('a -> 'b -> 'c) -> 'a t -> 'b t -> 'c t
5 val map : ('a -> 'b) -> 'a t -> 'b t
6 val filter : ('a -> bool) -> 'a t -> 'a t
7 val sort : ('a -> 'a -> int) -> 'a t -> 'a t
8 val unique : 'a t -> 'a t
9 val group_all : ('a, 'b) agg -> 'a t -> 'b
10 val group : ('a -> 'c) -> ('a, 'b) agg -> 'a t -> 'b t
11

12 type 'a src = 'a list
13 val input : 'a src -> 'a t
14 val output : 'a t -> 'a src

Figure 24: Signature of module SelectML

The translation schema is given in Figure 25. The generated

OCaml expressions are type-safe since the expressions passed to

the primitives are already type-checked when generating the plans.

1 ⟦E⟧ => SelectML.singleton ()
2

3 ⟦D𝜒 (𝑒)⟧ => 𝑒 |> SelectML.input
4

5 ⟦P1 × P2⟧ => SelectML.product
6 (fun ⟦𝜙 (P1)⟧ ⟦𝜙 (P2)⟧ -> ⟦𝜙 (P1)⟧ ++ ⟦𝜙 (P2)⟧) ⟦P1⟧ ⟦P2⟧
7

8 ⟦𝜎𝑒 (P)⟧ => ⟦P⟧ |> SelectML.filter (fun ⟦𝜙 (P)⟧ -> 𝑒)
9

10 ⟦Π𝑒/𝜒 (P)⟧ => ⟦P⟧ |> SelectML.map (fun ⟦𝜙 (P)⟧ -> 𝑒)
11

12 ⟦𝑒S𝑒𝑓 (P)⟧ => ⟦P⟧ |> (let cmp = 𝑒𝑓 and key ⟦𝜙 (P)⟧ = 𝑒 in

13 SelectML.sort (fun a b -> cmp (key a) (key b)))
14

15 ⟦U(P)⟧ => ⟦P⟧ |> SelectML.unique
16

17 ⟦𝑒 G𝑒
1
,...,𝑒𝑛 (P)⟧ => ⟦P⟧ |> SelectML.group

18 (fun ⟦𝜙 (P)⟧ -> 𝑒) ⟦combine(𝑒1, . . . , 𝑒𝑛)⟧
19

20 ⟦G𝑒
1
,...,𝑒𝑛 (P)⟧ => ⟦P⟧ |> SelectML.group_all ⟦combine(𝑒1, . . . , 𝑒𝑛)⟧

21 |> SelectML.singleton
22

23 ⟦combine(𝑒1, . . . , 𝑒𝑛)⟧ =>
24 let Agg (init1, update1, final1) = 𝑒1 in
25 ...
26 let Agg (initn, updaten, finaln) = 𝑒𝑛 in
27 Agg ((init1, ... , initn),
28 (fun (acc1, ... , accn) (x1, ... , xn) ->
29 (update1 acc1 x1, ... , updaten accn xn)),
30 (fun (acc1, ... , accn) -> (final1 acc1, ... , finaln accn)))
31

32 ⟦P with exactly one row⟧ => ⟦P⟧ |> SelectML.one
33

34 ⟦P at the outermost⟧ => ⟦P⟧ |> SelectML.output

Figure 25: Translation Schema

• For the empty plan E, SelectML.singleton is called to construct
an idle list with only one row.

• For data source D(𝑒), SelectML.input is used to cast 𝑒 from

type src to type t.
• For Cartesian product P × P, SelectML.product is used to pro-

duce a product of two lists.

• For selection 𝜎𝑒 (P), SelectML.filter selects those rows that
meet the confition 𝑒 .

• For projection Π𝑒 (P), SelectML.map projects the rows from

𝜙 (P) to 𝑒 .

• For sorting 𝑒S𝑒𝑓 (P), cmp and key are created for comparison on

the sorting key 𝑒 , where cmp is a C-style compare function (cf. line

7 in Figure 24). Then SelectML.sort is called in P.
• For deduplicationU(P), SelectML.unique is called to dedupli-

cate the rows.

• For grouping 𝑒G𝑒1,...,𝑒𝑛 (P), SelectML.group is used to group

the rows against the key 𝑒 , and perform aggregation to the groups

with aggregate functions 𝑒1, . . . , 𝑒𝑛 . The type of grouping key 𝑒

corresponds to 'c on line 10 in Figure 24.

• For grouping G𝑒1,...,𝑒𝑛 (P), SelectML.group_all is used to ag-

gregate all rows as one group.

• Function combine(𝑒1, . . . , 𝑒𝑛) is used to combine several aggre-

gate functions as a single aggregate function. If the inputs for

combine are of types ('a1, 'b1) agg, ..., ('an, 'bn) agg, the re-
sult will have type (('a1, ..., 'an), ('b1, ..., 'bn)) agg.
As data supplied to SelectML.group is of type ('a1, ..., 'an)
SelectML.t, it would be sound to serve the combined aggregate

function as the argument.

• After we have translated the outermost plan, we have to cast the

result back to type SelectML.src by calling SelectML.output.
• When the result is bound to have exactly one row, SelectML.one
is called instead of SelectML.output to cast the result into a single
value rather than to SelectML.src.

4 IMPLEMENTATION
This section will further elaborate the implementation of SelectML.
The source code of SelectML is available online [6], which is devel-

oped based on a fork of the original OCaml compiler [1].

As described in 1.2, the OCaml compiler starts with the parsing

phase (see file parsing/parse.ml), where the source program is

read from a text file or an input channel (e.g. stdin), and parsed

into a Parsetree (defined in parsing/parsetree.mli).

4.1 Typing the Select Expression
SelectML is implemented by modifying the parsing and typing

phases of the Ocaml compiler front-end as depicted in Section 1.2

and Figure 26. The Select Expression Pexp_select and aggregation
Pexp_aggregate are added as new variants to Parsetree.expression.

Pt.expression
TypeCheck
−−−−−−−−→
&Planning

Tt.plan
Translating
−−−−−−−−−→ Tt.expression

Figure 26: Typing the Select Expression (Pt and Tt stands for
Parsetree and Typedtree respectively)

4.1.1 Planning Phase. Originally in the OCaml compiler, the typing

phase is to transform Parsetree.expression to Typedtree.expression.
But for Pexp_select and Pexp_aggregate in SelectML, there is a
planning phase that will typecheck the given Select Expression and

generate a query plan for it.

The query plan is implemented as Typedtree.plan, and there

is a correspondence to the plans described in Section 3:

• Tplan_null for the empty plan E.
• Tplan_source for data source D𝜒 (𝑒).
• Tplan_product for Cartesian product P1 × P2.
• Tplan_filter for selection 𝜎𝑒 (P).
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• Tplan_project for projection Π𝑒/𝜒 (P).
• Tplan_sort for sorting 𝑒S𝑒𝑓 (P).
• Tplan_unique for deduplicationU(P).
• Tplan_aggregate_all for groupingwithout the GROUP BY clause
G𝑒𝑎/𝜒 (P).
• Tplan_aggregate for grouping 𝑒G𝑒𝑎/𝜒 (P).

For the aggregation Pexp_aggregate, there is a typed version

Texp_aggregate. However, Texp_aggregate is just a temporary

form since all the aggregations within the Select Expression are

handled during the planning phase. Any standalone occurrence of

Texp_aggregate outside the Select Expression will be regarded as

a compilation error.

4.1.2 Translation and Optimisation. As explained in Section 3.4,

query plans are translated into a chunk of function calls to primi-

tives defined in module SelectML. Since the compiler searches for

the module SelectML by name, which means the default primitives

can be replaced by shadowing the module with the same name.

This leads to a problem that if the searched module lacks the defi-

nition of some primitives or the type signatures cannot match, the

translated expression will be unsound in type.

1 module type SelectMLType = sig
2 type 'a t
3 val one : 'a t -> 'a
4 val singleton : 'a -> 'a t
5 val product : ('a -> 'b -> 'c) -> 'a t -> 'b t -> 'c t
6 val map : ('a -> 'b) -> 'a t -> 'b t
7 val filter : ('a -> bool) -> 'a t -> 'a t
8 val sort : ('a -> 'a -> int) -> 'a t -> 'a t
9 val unique : 'a t -> 'a t
10 val group_all : ('a, 'b) agg -> 'a t -> 'b
11 val group : ('a -> 'c) -> ('a, 'b) agg -> 'a t -> 'b t
12

13 type 'a src
14 val input : 'a src -> 'a t
15 val output : 'a t -> 'a src
16 end

Figure 27: Signature of Primitives

To ensure the translated expressions are well-typed, the module

found by the compiler with the name SelectML must be checked

against the module signature SelectMLType (Figure 27) which is

defined in file stdlib/stdlib.ml.

1 t |> SelectML.input
2 |> SelectML.map (fun x -> x)
3 |> SelectML.group_all Stdlib.count
4 |> SelectML.singleton
5 |> SelectML.map (fun __col_2 -> __col_2)
6 |> SelectML.one

Figure 28: A Translation Result

Figure 28 gives an unoptimised version of the translated code.

With the optimisation on removing the unnecessary operations, the

planΠ𝑐 (Gcount/𝑐 (Π𝑥 (D𝑥 (t)))) can be transformed toG
count/𝑐 (D𝑥 (t)).

However, there is still superfluous operations in the result (line 3 to

4), which requires changes in the translation schema for the recogni-

tion of such cases. side effects of the Select Expression. The identical

columns in the SELECT, GROUP BY, HAVING, ORDER BY clauses are

merged into a unique one to avoid duplicate computations.

4.2 Flexibility of the Usage
As explained in the previous section, the implementation leaves

much flexibility to the usage of the Select Expression since the

module SelectML can be changed by the programmer.

4.2.1 Shadowing the Primitives. In OCaml, we can shadow a name

by introducing either a local binding or a toplevel binding. For

instance, redefining function group for a customised grouping be-

haviour, where only adjacent rows with the same group key will

be grouped together.

1 let module SelectML = struct (* Local binding *)
2 include SelectML
3 let group key aggf l =
4 let cmp f a b = compare (f a) (f b) in
5 let Agg (init, update, final) = aggf in
6 l |> List.to_seq
7 |> Seq.group (fun a b -> cmp key a b = 0)
8 |> Seq.map (fun g -> final (Seq.fold_left update init g))
9 |> List.of_seq
10 end in
11 SELECT x FROM x <- [1;2;3;1;2;3] GROUP BY x ORDER BY x;;
12 - : int list = [1; 1; 2; 2; 3; 3]

Figure 29: Shadow by Local Bindings

1 SELECT x FROM x <- [1;2;3;1;2;3] GROUP BY x ORDER BY x;;
2 - : int list = [1; 2; 3]

Figure 30: Standard Behaviour

In Figure 29, the Select Expression on the line 11 produces dif-

ferent results from Figure 30. Line 11 is under the shadow of local

module binding, and the rows with the same group key are not

grouped together as they are not adjacent. Figure 30 produces a

common result since the original module SelectML is used. By

constrast, in Figure 31, the output for line 5 and line 8 are the same.

1 module SelectML = struct (* Toplevel binding *)
2 include SelectML
3 let group key aggf l = ...
4 end;;
5 SELECT x FROM x <- [1;2;3;1;2;3] GROUP BY x ORDER BY x;;
6 - : int list = [1; 1; 2; 2; 3; 3]
7

8 SELECT x FROM x <- [1;2;3;1;2;3] GROUP BY x ORDER BY x;;
9 - : int list = [1; 1; 2; 2; 3; 3]

Figure 31: Shadow by Toplevel Bindings

4.2.2 Changing the Input and Output Type. Since module signa-

ture SelectMLType only defines abstract types and values, it is

possible to change type 'a src and 'a t to any other data types.

type 'a src controls the input and output type of the Select Ex-

pression. It can be changed to 'a array, 'a Seq.t or any user-

defined data types as long as corresponding primitives input and
output are provided. An example for array is given in Figure

32. The toplevel module SelectML conforms to module signature

SelectMLType, with type src changed to array and primitives

input, output defined for type casting between list and Seq.t.
Now the Select Expression can be used to handle arrays.
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1 module SelectML = struct
2 include SelectML
3 type 'a src = 'a array
4 let input = Array.to_list
5 let output = Array.of_list
6 end;;
7

8 SELECT x FROM x <- [|1;2;3|] WHERE x mod 2 = 1;;
9 - : int array = [|1; 3|]
10

11 SELECT x, y FROM x <- [|1;2;3|], y <- [|4;5;6|]
12 ORDER BY x USING odd_first, y USING odd_first;;
13 - : (int * int) array =
14 [|(1, 5); (3, 5); (1, 4); (1, 6); (3, 4);
15 (3, 6); (2, 5); (2, 4); (2, 6)|]

Figure 32: Changing the Input and Output Type

4.2.3 Changing the Intermediate Type. The module SelectML in

Stdlib (file stdlib/selectML.ml) provides a simple implementa-

tion of the primitives of SelectMLType with the intermediate type

being list.

1 type 'a t = 'a list
2

3 let one = function [x] -> x | _ -> assert false
4 let singleton x = [x]
5 let product f xs ys =
6 List.concat_map (fun x -> List.map (fun y -> f x y) ys) xs
7

8 let map = List.map
9 let filter = List.filter
10 let sort = List.stable_sort
11 let unique l = List.sort_uniq compare l
12

13 let group_all aggf l =
14 let Agg (init, update, final) = aggf in
15 final (List.fold_left update init l)
16

17 (* Group the rows by sorting them against the group key,
18 then aggregate each group. *)
19 let group key aggf l =
20 let cmp f a b = compare (f a) (f b) in
21 let Agg (init, update, final) = aggf in
22 l |> List.stable_sort (cmp key)
23 |> (function
24 | [] -> []
25 | hd :: tl ->
26 let _, l, acc = List.fold_left
27 (fun (prev, lst, acc) row ->
28 if prev = key row then (prev, lst, update acc row)
29 else (key row, final acc :: lst, update init row))
30 (key hd, [], update init hd)
31 tl
32 in final acc :: l)

Figure 33: Stdlib Module SelectML

The default implementation is listed in Figure 33, with the in-

termediate type t defined to be list. As the primitives accept and

return data of type t, it is possible to change the intermediate type

into any other data types that may bring benefits. Figure 34 is an

example of changing the type to array. A great distinction lies in

the implementation of function group, where Figure 33 adopts a
sorting aggregate algorithm, and Figure 34 adopts a hash aggregate

algorithm. It shows the flexibility of customising the behaviour

of the Select Expression according to properties of the container

types.

In mainstream databases, it is common to process data in batches,

and a table can either be persisted or be a temporary existence in

1 type 'a t = 'a array
2

3 let one t = t.(0)
4 let singleton x = [|x|]
5 let product f t1 t2 =
6 let n1 = Array.length t1 and n2 = Array.length t2 in
7 let len = n1 * n2 in
8 Array.init len (fun i -> f t1.(i / n2) t2.(i mod n2))
9

10 let map = Array.map
11 let filter f t =
12 let len = ref 0 in
13 let b = map (fun x ->
14 if f x then (incr len; true) else false) t in
15 let j = ref 0 in
16 let next _ = while not (b.(!j))
17 do incr j done; incr j; t.(!j-1) in
18 Array.init !len next
19

20 let group_all f t =
21 let Agg (init, update, final) = f in
22 let acc = ref init in
23 for i = 0 to Array.length t - 1
24 do acc := update !acc t.(i) done;
25 final !acc
26

27 (* Group the rows by adding them to a hash table
28 * with the group key working as the hash key,
29 * and perform the aggregation in the middle of grouping. *)
30 let group key f t =
31 let Agg (init, update, final) = f in
32 let ht = Hashtbl.create (Array.length t) in
33 for i = 0 to Array.length t - 1 do
34 let k = key t.(i) in
35 let acc = try Hashtbl.find ht k with Not_found -> init in
36 Hashtbl.replace ht k (update acc t.(i))
37 done;
38 Array.map final (Array.of_seq (Hashtbl.to_seq_values ht))

Figure 34: Changing the Intermediate Type

1 module SelectML = struct
2 type 'a t = 'a chunk
3 let map f t = (* parallel_map_for_chunk ... *)
4 let filter f t = (* parallel_filter_for_chunk ... *)
5 ...
6

7 type 'a src = 'a table
8 let input src = (* cast table to chunk *)
9 let output t = (* cast chunk to table *)
10 end

Figure 35: Parallel Implementation

memory.We can let type 'a src = 'a table and type 'a t = 'a chunk,
where table is defined to be the persistent or temporary data, and

chunk implemented as a block linked list. Then the primitives can

be implemented using parallel algorithms (Figure 35), since a block

is processed as a batch while different list nodes can be processed

simultaneously.

4.2.4 Generalisation. In Haskell, type classes are used for gener-

alising the operation for a group of types. The instances of a type

classes are passed implicitly to the callee functions. Since the list

type is an instance of monad in Haskell, the list comprehension can

be generalised to monad comprehensions [14] [3].

While there is no native support for ad-hoc polymorphism like

type classes in OCaml, we have to make use of the module lan-

guage to generalise the type of the Select Expression. The module

signature SelectMLType can serve as the annotated type of a mod-

ule argument. Implementations of SelectMLType can be passed as

9
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arguments to shadow the original module SelectML, as we do it

for function f in Figure 36.

1 (* invalid in OCaml *)
2 let f (module SelectML : SelectMLType) xs ys =
3 SELECT x, y FROM x <- xs, y <- ys WHERE x < y;;

Figure 36: Generalising the Type and Operations

However, the code in Figure 36 cannot typecheck since OCaml

does not support higher kinded types for type parameters. Instead,

we generalise function f by wrapping it inside a functor as shown

in Figure 37.

1 module F (SelectML : SelectMLType) = struct
2 let run xs ys = SELECT x, y FROM x <- xs, y <- ys WHERE x < y;;
3 end;;
4

5 module F : (* REPL output *)
6 functor (SelectML : SelectMLType) ->
7 sig
8 val run : 'a SelectML.src -> 'a SelectML.src ->
9 ('a * 'a) SelectML.src
10 end
11

12 (* Supplying primitives with the list implementation *)
13 let open F (ListImpl) in run ...
14

15 (* Supplying primitives with the array implementation *)
16 let open F (ArrayImpl) in run ...

Figure 37: Generalisation with Functors

The generalisation of the Select Expression allows the program-

mers to reuse the same business logics on various kinds of data

types. Nevertheless, for the same data type, the user may supply

modules with the different underlying implementations for the

primitives to achieve distinct behaviours from the same logic (line

12 to 16 in Figure 37).

5 RELATEDWORK
The typical list comprehension is in the form of [𝑒 | (var ← source)∗,
condition∗], which corresponds to the SELECT-FROM-WHERE query
in SQL. The generalised list comprehension [17] further supports

GROUP BY and ORDER BY, available as an extension [2] to GHC

compiler. Just like List comprehension, a similar operation can

be applied to other monad types (e.g., Maybe type) by the monad

comprehension [3, 14].

As OCaml does not have native support for ad-hoc polymor-

phism and higher kinded types, the generalisation for types in

SelectML have to be achieved using the module language [19] of

OCaml as described in Section 4.2.4. The modular implicits [22]

provides a solution for ad-hoc polymorphism in OCaml. With mod-

ular implicits, functions can accept implicit module arguments and

suitable module arguments can be passed implicitly. It may benefits

the implementation of SelectML by replacing the explicit shadowing
of module SelectML with implicit bindings.

A denotational semantics and validation of SQL queries are given

in the work [16]. Similar to this work, an operational semantics for

the Select Expression in SelectML is presented in Section 3.

SQLite [9] is a lightweight SQL database, which can be embed-

ded into softwares as program libraries. PostgreSQL [21] [5] is

an open-source object-relational database with good support for

user-defined functions and data types. It also support JIT execu-

tion for SQL queries. SingleStore [7] (formerly known as MemSQL)

is a distributed SQL HTAP (Hybrid Transactional and Analytical

Processing) database that features in-memory storage and JIT com-

pilation for the speed of data processing. HyPer [18] is another

in-memory HTAP database that utilises JIT for high performance

execution. Hadoop [20] is a distributed file system designed for

efficiently processing and storing big data. MapReduce [12] is a

programming model and an associated implementation built on top

of the Hadoop system for processing and generating large data sets.

Hive [11] is a data warehouse on Hadoop which provides an SQL-

like query language for data processing and analysis. Spark [24] is

Scala framework which supports applications with working sets

while providing similar scalability and fault tolerance properties

to MapReduce. The work [13] talks about the main coordinates for

data processing and SQL features for data analysis.

Rule-based optimisation [8] is an optimisation technique that

rewrites the query plan using a set of logical rules to a better plan

that may reduce the amount of computations. Cost-based optimisa-

tion [15] is a more powerful optimisation technique that finds the

best query plans by computing the minimum estimated cost of all

possible plans. OptGen [10] is a tool for generating verified local

optimisations from optimisation rules. It can be used to implement

the cost-based optimisation for databases.

6 CONCLUSION AND FUTUREWORK
SQL being widely adopted in mainstream databases, the Select

Query is the most commonly operation in SQL. The Select Query

handles data in functional manner as it does not mutate the input

and can be used as pure functions. Its conciseness of describing the

expected result set makes the Select Query a good complementary

for programming languages like OCaml.

In this work, SelectML as an SQL frontend on top of OCaml, is

presented for the purpose of data analysis. Two new constructs

have been added to OCaml expressions: the Select Expression, and

the aggregation. The new constructs can be used as other OCaml

expressions seamlessly. To model the behaviour of SelectML, an op-

erational semantics is presented to explain the typing and planning

rules for the Select Expression and the aggregation. The typing

rules specify how the Select Expression conforms with the OCaml

type system, and the planning rules imply what kind of plans will

be generated for a given Select Expression. A translation schema

from query plans to plan-free OCaml expressions is also provided.

The semantics that have been proposed can also serve as a refer-

ence implementation for SQL dialects. SelectML is implemented as

a language extension to OCaml, and project is available online. The

implementation makes the Select Expression a flexible construct for

programmers by giving them great freedom to customise the un-

derlying operation that is suitable for their use case. The input and

output type, the intermediate type, and the primitives for module

SelectML, can all be changed to user-defined versions. However,

the project is still a prototype and subjects to several limitations.

The join operations, window functions, indexes and optimisations

are important features for SQL database that will be addressed in

the future.
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A LIMITATIONS AND FUTUREWORKS
Other missing features include specialised join syntax (Section A.1),

window functions (Section A.2), and plan optimisations A.3.

A.1 Joins
Currently, the Cartesian productP×P together with selection 𝜎 are

used to simulate the inner join. In this way, all possible combinations

of elements from the two data sources have to be computed and

stored in memory before performing the selection. Although the

memory consumption can be alleviated by using lazy data structures

like Seq.t, it still leads to mediocre performance in most cases.

1 SELECT ... FROM xs JOIN ys ON condition /* inner join */
2 SELECT ... FROM xs NATURAL JOIN ys /* natural join */
3 SELECT ... FROM xs LEFT JOIN ys ON condition /* left outer join */
4 SELECT ... FROM xs FULL JOIN ys ON condition /* full outer join */

Figure 38: Join Operations

There are more types of join operations apart from inner joins,

like natural joins and outer joins, shown in Figure 38. Users gener-

ally don’t have to write the join condition using syntax JOIN ON
explicitly. For queries like FROM xs, ys WHERE x = y, the condi-
tion residing in the WHERE clause is extracted, and if the condition

can be used as a join condition, the Cartesian product will be re-

placed with an inner join. The performance can be significantly

improved since inner join can be implemented with merge join or

hash join, rather than nested loops for Cartesian product.

1 val join : ('a -> 'b -> 'c option) -> 'a t -> 'b t -> 'c t
2 val join_eq : ('a -> 'd) -> ('b -> 'd) -> 'a t -> 'b t -> 'c t

Figure 39: Primitives for Join Operations

As for future work, a new plan P1 ⊲⊳𝑒 P2 will be added for the

inner join. And new primitives for implementing the inner join

(Figure 39).

1 (* when hash key can be determined *)
2 SELECT ... FROM x <- xs JOIN y <- ys ON x = y;;
3 (* translation *)
4 SelectML.join_eq (fun x -> x) (fun y -> y) xs ys;;
5

6 (* when hash key cannot be determined *)
7 SELECT ... FROM x <- xs JOIN y <- ys ON f x y;;
8 (* translation *)
9 SelectML.join (fun x y->if f x y then Some (x,y) else None) xs ys;;

Figure 40: Using Join Operations

When the hash keys of both sides can be determined (Figure 40),

plan ⊲⊳𝑒 can be translated to calls for join_eq, which should be

implemented as hash join or some other efficient algorithm. Other-

wise, join is used to perform a regular join with conditions, and

join is supposed to filter those elements at the time of computing

the product.
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1 /* SQL */
2 INSERT INTO xs VALUES (1), (2);
3 INSERT INTO ys VALUES (2), (3);
4 SELECT x, y FROM xs AS x LEFT JOIN ys AS y ON x = y;
5

6 x | y
7 ---+---
8 1 |
9 2 | 2

1 (* SelectML *)
2 let xs = [1; 2];;
3 let ys = [2; 3];;
4 SELECT x, y FROM x <- xs LEFT JOIN y <- ys ON x = y;;
5

6 x | y
7 ---+--------
8 1 | None
9 2 | Some 2

Figure 41: Example of Left Outer Join

A.1.1 Outer Joins. The example in Figure 41 shows the result of

left outer join in PostgreSQL 14.2. The outer join of two data sources

is like the inner join plus the remaining data from any of the two

sides. Left outer joins perserve the data from the left side, right

outer joins perserve the data from the right side, and full outer joins

perserve both sides. Empty cells will be filled with NULLs. In Se-
lectML, to support such feature, we have to replace NULL with None,
the column type being changed from 'a to 'a option. Similarly,

examples of right and full outer joins are given in Figure 42.

1 SELECT x, y FROM x <- xs RIGHT JOIN y <- ys ON x = y;;
2

3 x | y
4 --------+---
5 Some 2 | 2
6 None | 3
7

8 SELECT x, y FROM x <- xs FULL JOIN y <- ys ON x = y;;
9

10 x | y
11 --------+--------
12 Some 2 | Some 2
13 Some 1 | None
14 None | Some 3

Figure 42: Example of Right/Full Outer Join

A.2 Window Functions
In SQL, window functions are a group of functions that compute

the result for each row using the values of one or more other rows,

which is useful for analytical data processing. For instance, to com-

pute the average of 15 most recent records/rows for financial data.

An example of window functions in PostgreSQL 14.2 is shown in

Figure 43. The PARTITION BY clause creates window frames for the

rows with the same value on x, and these rows will be used as the

input for aggregate function COUNT.

1 INSERT INTO t VALUES (1,1),(1,2),(1,3),(2,2),(2,3),(3,3);
2 SELECT x, COUNT(y) OVER (PARTITION BY x) FROM t;
3 SELECT x, COUNT(y) OVER (ORDER BY x) FROM t;
4

5 /* PARTITION BY */ /* ORDER BY */
6 x | count x | count
7 ---+------- ---+-------
8 1 | 3 1 | 3
9 1 | 3 1 | 3
10 1 | 3 1 | 3
11 2 | 2 2 | 5
12 2 | 2 2 | 5
13 3 | 1 3 | 6

Figure 43: Example of Window Functions

x=1, count=3
x=1, count=3
x=1, count=3

x=2, count=2
x=2, count=2

x=3, count=1

(a) Window Frames of PARTITION BY

x=1, count=3
x=1, count=3
x=1, count=3

x=2, count=5
x=2, count=5

x=3, count=6

(b) Window Frames of ORDER BY

Figure 44: Example of Windows Frames

Figure 44 gives an overview of the window frames generated

by different window specifications for Figure 43. In SelectML, the
syntax for window function can be tailored to aggregation OVER
window-spec, like in Figure 45.

1 {agg y} OVER (PARTITION BY x)
2 {agg y} OVER (ORDER BY x)
3 {agg y} OVER (ROWS UNBOUNDED PRECEDING)

Figure 45: Window Functions in SelectML

As shown in the examples, the window function is an aggregate

function plus a window specification. Since it is possible for a

window to slide during the execution (affected by ORDER BY, ROWS,
RANGE), the aggregate function has to support appending a value

to its tail, as well as removing a value from its head. Hence, the

definition for aggregate functions should be changed to Figure 46.

1 type ('a, 'b, 'c) aggfunc =
2 'c * (* the initial value *)
3 ('c -> 'a -> 'c) * (* append to the tail *)
4 ('a -> 'c -> 'c) * (* remove from the head *)
5 ('c -> 'b) (* get the result *)
6

7 type (_, _) agg = Agg : ('a, 'b, 'c) aggfunc -> ('a, 'b) agg

Figure 46: Aggregate/Window Functions

It is easy to support the window function that produces the cor-

rect result, while the real challenge will be supporting it efficiently.
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A.3 Optimisations
The same SQL query can be translated to several equivalent query

plans, that may differ in time complexity and/or space consump-

tions. Therefore, it is important to find the best plan in terms of

performance for industry level databases.

The query plan optimisation is the core part of the SQL optimiser

in mainstream databases. Databases, as the data management sys-

tem, have access to the meta information (which is called Schema)

about the tables being queried, including the number of rows, the

frequency of being queried. By accessing and maintaining these

information each time a query happens, the databases system is

able to perform a cost-based optimisation. For instance, the opti-

miser may decide an Aggregate operation is implemented in hash

aggregation or ordered aggregation depending on the size of the

input.

On the contrary, SelectML on top of OCaml, as a statically typed

language, compiles programs to executables ahead-of-time. It does

not have the runtime information for data that are given to the

Select Expression, hence it is not able to perform cost-based opti-

misations for the query plans without modifying the runtime.

Nevertheless, it always possible to perform rule-based optimi-

sations with knowledge from the compile time. Following are two

possible rules for optimising plans,

• eliminating unnecessary plans, e.g. removing the identity projec-

tion: Π (𝑐1,𝑐2) (Π (𝑥,𝑦)/(𝑐1,𝑐2) (P)) =⇒ Π (𝑥,𝑦) (P).
• pushing down the selection in order to save the computation on

joining:

𝜎𝑥<1∧𝑦>1 (D𝑥 (xs) ×D𝑦 (ys)) =⇒ 𝜎𝑥<1 (D𝑥 (xs)) ×𝜎𝑦>1 (D𝑦 (ys))

A.3.1 Indexes. Indexes in databases are used to locate data quickly

without scanning thewhole table, and they are usually implemented

in B-tree.

1 /* SQL */
2 SELECT x FROM xs AS x WHERE x BETWEEN lb AND ub
3 SELECT x FROM xs AS x, ys AS y WHERE x < 1
4 SELECT x FROM xs AS x, ys AS y WHERE x < y

Figure 47: Condition Involving Comparisons

Indexes is an important optimisation point when there are com-

parisons in the WHERE condition (Figure 47). Without indexes on x,
plan 𝜎𝑥<1 (D𝑥 (xs)) will have to perform a full scan on table xs to

get the data satisfying 𝑥 < 1. With indexes created on x, the full
scan can be replaced with a range scan only on interval (− inf, 1).
Also, the trivial nested loop join algorithm can be substituted by

merge join and index lookup join if indexes are available.

This has posed an issue for SelectML, since it is not an easy task to
check if there are some indexes defined on the input data within the

type system of OCaml. For instance, describing the index created

for the first column of (int * int) list. And to deal with this,

some efforts have to be made on the OCaml type system.

Figure 48 poses a possible solution for the type system. Indexes

are modeled by module type datatype ORDER BY fields. For tuple
types like (int * int) list (line 16, 17), the fields are integers
to denote which columns are to be indexed , i.e. 0 denotes the first

column of (int * int) list. For records like order list (line
21, 22), the fields should be the field names of the record type.

1 (* SelectML *)
2 type index
3

4 module type SelectMLType = sig
5 ...
6 val get : index -> 'a t -> 'a
7 end;;
8

9 module type IndexType = sig
10 type 'a t
11 val data : 'a SelectML.t
12 val to_seq : 'a t -> (index * 'a) Seq.t
13 val to_seq_from : 'a -> 'a t -> (index * 'a) Seq.t
14 end;;
15

16 let f (module XS : (int * int) list ORDER BY 0) =
17 SELECT x, y FROM (x, y) <- (module XS) WHERE lb <= x && x <= ub;;
18

19 type order = { id: int; price: float; month: string }
20

21 let f' (module XS : order list ORDER BY price) =
22 SELECT x FROM x <- (module XS) WHERE lb <=. x && x <=. ub;;

Figure 48: Typing Indexes

The FROM clause is responsible for recognising the index type

in the source expression. Syntax datatype ORDER BY fields serves
as module interfaces, any module passed as arguments must be

an instance of IndexType. type 'a t stands for the data structure

storing the indexes (line 10). data refers to the original data of

type SelectML.t (line 11). to_seq and to_seq_from are analogous
to functions defined in OCaml Map, which output a sequence of

ordered indexes (line 12, 13). With the indexes, data can be retrieved

using SelectML.get (line 6).
For instance, lb <= x (line 17) will be translated to XS.to_seq lb XS.data

to get the indexes sequence starting from lb. The retrieving of data
will stop when ub is met.
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