
Staged Specification Logic
Higher-order Imperative Programs + Algebraic Effects

Yahui Song
Research Fellow @ National University of Singapore (NUS)

September 2024

1

My Research
• PhD (2018 Aug – 2023 May)

Thesis: Symbolic Temporal Verification Techniques with Extended Regular Expressions

Keywords: Modularly (Scalability), Expressive Specification, Hoare-style Verification

 Event-based reactive systems [ICFEM 2020]

 Synchronous languages like Esterel [VMCAI 2021]
 User-defined algebraic effects and handlers [APLAS 2022]
 Real-time systems [TACAS 2023]

• Research Fellow (2023 – now)

Applications

2

My Research
• PhD (2018 Aug – 2023 May)

Thesis: Symbolic Temporal Verification Techniques with Extended Regular Expressions

Keywords: Modularly (Scalability), Expressive Specification, Hoare-style Verification

 Event-based reactive systems [ICFEM 2020]

 Synchronous languages like Esterel [VMCAI 2021]
 User-defined algebraic effects and handlers [APLAS 2022]
 Real-time systems [TACAS 2023]

• Research Fellow (2023 – now)
Temporal Property Guided Bug Detection and Repair [FSE 2024]

Staged Specification Logic:
Higher-order Imperative Programs [FM 2024]

Unrestricted Algebraic Effects and Handling [ICFP 2024]

Applications

3

Staged Specification Logic for Verifying

Higher-Order Imperative Programs

Darius Foo, Yahui Song, Wei-Ngan Chin

5

Challenges with Effectful Higher-order Functions

• Existing (automated) verifier varies greatly:
• Pure only: Dafny, WhyML, Cameleer
• Type system (Rust) guarantees: Creusot, Prusti
• Interactive: Iris, CFML, Pulse/Steel (F*)

• When supported, specifications are imprecise

• Is there a precise and general way to support effectful higher-

order functions in automated program verifiers?

6

(Separation logic) Invariant
relating input to resultfoldr should not change the list

Some clients may want to operate
only on certain kinds of lists f must preserve the invariant

Specification in Iris

7

The Use of Abstract Properties

• foldr commits to an abstraction of f’s behavior

• The abstraction may not be precise enough for a given client

https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf (page 32)

8

https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf

Difficult to handle cases like:

• Problem 1: Mutable list

• Problem 2: Strengthened precondition

• Problem 3: Exceptions/effects

9

• Problem 1: Mutable list

• Problem 2: Strengthened precondition

• Problem 3: Exceptions/effects

Difficult to handle cases like:

Can we get rid of abstraction
when designing spec for HO-functions?

10

We Propose “Staged Specification Logic”

Sequencing (Un)interpreted relations

1. Sequencing and uninterpreted relations
2. Recursive formulae
3. Re-summarization of recursion/lemmas
4. Compaction via bi-abduction

⟹ Defer abstraction until appropriate

11

We can no longer assume anything about y at this point.

We also cannot assume anything about x!

1. Sequencing and uninterpreted relations

12

2. Recursive formulae

13

3. Re-summarization of recursion via lemmas

14

3. Re-summarization of recursion via lemmas

15

• Recovering abstraction: proving entailments

16

3. Re-summarization of recursion via lemmas

Inductive
Step

• Recovering abstraction: proving entailments

17

3. Re-summarization of recursion via lemmas

Bi-abduction

• Recovering abstraction: proving entailments

18

3. Re-summarization of recursion via lemmas

Solutions with Staged Logic
• Problem 1: Mutable list

• Problem 2: Strengthened precondition

• Problem 3: Exceptions/effects

19

More about
Effects later!

Implementation & Evaluation
• 5K LoC on top of OCaml 5

• Reasonably low verification time

• Feasibility & increased expressiveness over existing systems

LoS/LoC = 0.37 = 2.49 = 0.73

inexpressible

incomparable

20

• Staged logic for effectful higher-order programs
1. Sequencing and uninterpreted relations

2. Recursive formulae

3. Re-summarization of recursion/lemmas

4. Compaction via bi-abduction

⟹ Defer abstraction until appropriate

• Heifer – a new automated verifier: https://github.com/hipsleek/heifer
*Higher-order Effectful Imperative Function Entailments and Reasoning

Summary

21

https://github.com/hipsleek/heifer

Specification and Verification for

Unrestricted Algebraic Effects and Handling

Yahui Song, Darius Foo, Wei-Ngan Chin

22

User-defined Effects and Handlers

Example taken from “Effect Handlers in Multicore OCaml” slides by KC Sivaramakrishnan.

This prints: 0 1 2 3 4

23

Motivation Example

• Zero-shot handlers: abandon the continuation, just like exception handlers;

• One-shot handlers: resume the continuation once, the assertion on line 8 succeeds;

• Multi-shot handlers: resume the continuation more than once, the assertion on line 8 fails.

24

Existing verification techniques:
Ø multi-shot continuations + pure setting, e.g. [Song et al. 2022];
Ø heap manipulation + one-shot continuations, e.g. [de Vilhena and Pottier 2021];

Ø multi-shot + heap-manipulation, under a restricted frame rule, e.g. [de Vilhena 2022].

Motivation Example

25

Protocol Based Approach [de Vilhena and Pottier 2021]

• Hazel & Maze: Model client-handler interactions in the form of protocols

• Globally define the effects that clients perform and the replies they receive from handlers

• Global assumptions to provide explicit (or early) interpretation effects

26

https://cambium.inria.fr/~fpottier/publis/de-vilhena-pottier-sleh.pdf

Existing verification techniques:
Ø multi-shot continuations + pure setting, e.g. [Song et al. 2022];
Ø heap manipulation + one-shot continuations, e.g. [de Vilhena and Pottier 2021];

Ø multi-shot + heap-manipulation, under a restricted frame rule, e.g. [de Vilhena 2022].

Motivation Example

27

Specification and Verification for

Unrestricted Algebraic Effects and Handling

Yahui Song, Darius Foo, Wei-Ngan Chin

4th Sep @ ICFP 2024, Milan, Italy

28

• Fully modular per-method verification (no global assumption)

• Sequencing, j1 ; j2

• Uninterpreted relations for unhandled effects and unknown functions, E(x, r)
• Reducible try-catch logic constructs

• Normalization: compact each sequence of pre/post stages, via bi-abduction

• Use re-summarization (lemma) when handling recursive generated effects

result

input

Our Solution: Effectful Specification Logic (ESL)

29

We propose ESL

30

We propose ESL

Bi-abduction:
∃ z; req x→z;
 ens x→z+1;
∃ b; req x→b ∧ b=1

31

We propose ESL

Bi-abduction:
∃ z; req x→z ∧ z+1=1;
 ens x→z+1

32

Try-Catch Reduction (Examples)

33

Try-Catch Reduction (Examples)

34

Intuition:
Ø Explicit access to continuation
Ø Modular verification:
• try-catch reduction
• normalization via bi-abduction

Try-Catch Reduction (Examples)

35

• The base case:

• When handling an effect, first reason about the behaviours of its continuation

• Instantiate the high-order predicate k using the continuation’s specification

Try-Catch Reduction (Selected Rules)

36

• The base case:

• When handling an effect, first reason about the behaviours of its continuation

• Instantiate the high-order predicate k using the continuation’s specification

Try-Catch Reduction (Selected Rules)

effect-free (wrt Hɸ) after #

Binding the effect free
continuation to k 37

Higher-Order Function meets Unresolved Try-Catch Construct

Keep the try-catch constructs

in the specification, which allows

modular verification.

Instantiate the

unknown function

Reducing the

try-catch construct

38

Inductive Proofs via Lemmas

Conjunct each Flip result

39

n=1, counter = 2, res = 1

n=2, counter = 6, res =1

n=3, counter=14, res =1

…

… , counter = 2n+1-2, res=1

Inductive Proofs via Lemmas

Conjunct each Flip result

Sum up how many back tracking branches leads to all true 40

n=1, counter = 2, res = 1

n=2, counter = 6, res =1

n=3, counter=14, res =1

…

… , counter = 2n+1-2, res=1

Inductive Proofs via Lemmas

41

Inductive Proofs via Lemmas

• Proving via applying lemmas
• Lemmas are proved based on:

ü Try-catch reduction
ü Unfolding and rewriting (entailment rules)

42

Implementation and Evaluation
• 5K LoC on top of OCaml 5

• Benchmark programs with features: (Ind) proof is inductive, (MultiS)multi-shot
handlers, (ImpureC) impure continuations, (HO) program is higher-order.

LoS/LoC < 30% 43

44

Summary
ü Scope: Zero/one/multi-shots + impure continuations, deep/shallow handlers, left/right recursion

ü Effectful Specification Logic: Staged specifications + unhandled effects + try-catch logic constructs

ü Hoare-style Verifier: ML-like language + imperative higher-order + algebraic effects.

ü The Back-end Checker for ESL: Normalization rules + reduction process of try-catch constructs.

ü Prototype (Multicore OCaml): Proven correctness, report on experimental results, and case studies.

Take Away:

Summary
ü Scope: Zero/one/multi-shots + impure continuations, deep/shallow handlers, left/right recursion

ü Effectful Specification Logic: Staged specifications + unhandled effects + try-catch logic constructs

ü Hoare-style Verifier: ML-like language + imperative higher-order + algebraic effects.

ü The Back-end Checker for ESL: Normalization rules + reduction process of try-catch constructs.

ü Prototype (Multicore OCaml): Proven correctness, report on experimental results, and case studies.

1) Try not to assume, for both HO functions and effects!

2) Modular specifications without global assumptions: try-catch constructs.

3) Explicit access to the continuations, which can be composed as needed.

45

Thanks!

My Research

46

Future
Ø Staged Specification Logic

1) Summary/Lemma Inference;

2) Non-terminating/liveness behaviours of effects handling;

3) Apply staged specification to delimited control operators, e.g., shift/reset;

4) Combine staged specification with type system.

Ø Temporal Logic Based Bug Finding and Repair
1) Least Fixpoint & Greatest Fixpoint defined analysis : CTL + Datalog;

2) Liveness Checking: Termination + Safety checking + Fairness Assumption;

3) Temporal Logic Augmented LLM.

Ø …

47

[ICFEM 2020] Yahui Song and Wei-Ngan Chin. Automated temporal verification of integrated dependent effects. In
Shang-Wei Lin, Zhe Hou, and Brendan P. Mahony, editors, Formal Methods and Software Engineering - 22nd
International Conference on Formal Engineering Methods, Singapore, Singapore, March 1-3, 2021, Proceedings,
volume 12531 of Lecture Notes in Computer Science, pages 73–90. Springer, 2020. doi: 10.1007/978-3-030-63406-
3_5. URL https://doi.org/10.1007/ 978-3-030-63406-3_5.

[VMCAI 2021] Yahui Song and Wei-Ngan Chin. A synchronous effects logic for temporal verification of pure esterel. In
Fritz Henglein, Sharon Shoham, and Yakir Vizel, editors, Verification, Model Checking, and Abstract Interpretation -
22nd International Conference, Copenhagen, Denmark, January 17-19, 2021, Proceedings, volume 12597 of Lecture
Notes in Computer Science, pages 417–440. Springer, 2021. doi: 10.1007/978-3-030-67067-2_19. URL
https://doi.org/10.1007/ 978-3-030-67067-2_19.

[APLAS 2022] Yahui Song, Darius Foo, and Wei-Ngan Chin. Automated temporal verification for algebraic effects. In
Ilya Sergey, editor, Programming Languages and Systems - 20th Asian Symposium, Auckland, New Zealand,
December 5, 2022, Proceedings, volume 13658 of Lecture Notes in Computer Science, pages 88–109. Springer, 2022.
doi: 10.1007/978-3-031-21037-2_5. URL https://doi.org/10.1007/ 978-3-031-21037-2_5.

References

48

[TACAS 2023] Yahui Song and Wei-Ngan Chin. Automated verification for real-time systems - via implicit clocks and
an extended antimirov algorithm. In Sriram Sankaranarayanan and Natasha Sharygina, editors, Tools and Algorithms
for the Construction and Analysis of Systems - 29th International Conference, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2022, Paris, France, April 22-27, 2023, Proceedings, Part I,
volume 13993 of Lecture Notes in Computer Science, pages 569–587. Springer, 2023. doi: 10.1007/978-3-031-30823-
9_29. URL https: //doi.org/10.1007/978-3-031-30823-9_29.

[FSE 2024] Yahui Song, Xiang Gao, Wenhua Li, Wei-Ngan Chin, and Abhik Roychoudhury. Provenfix: Temporal
property-guided program repair. Proceedings of the ACM on Software Engineering, 1(FSE):226–248, 2024b.

[FM 2024] Darius Foo, Yahui Song, and Wei-Ngan Chin. Staged specifications for automated verification of higher-
order imperative programs. CoRR, abs/2308.00988, 2023. doi: 10.48550/ARXIV.2308.00988. URL
https://doi.org/10.48550/arXiv.2308. 00988.

[ICFP 2024] Yahui Song, Darius Foo, and Wei-Ngan Chin. Specification and verification for unrestricted algebraic
effects and handling. Proc. ACM Program. Lang., 8(ICFP), aug 2024a. doi: 10.1145/3674656. URL
https://doi.org/10.1145/3674656.

References

49

[POPL 2021] Paulo Emílio de Vilhena and François Pottier. 2021. A separation logic for effect handlers. Proc. ACM
Program. Lang. 5, POPL, Article 33 (January 2021), 28 pages. https://doi.org/10.1145/3434314.

[PhD Thesis 2022] Paulo Emílio de Vilhena. Proof of Programs with Effect Handlers. Computation and Language
[cs.CL]. Université Paris Cité, 2022. English. ⟨NNT : 2022UNIP7133⟩. ⟨tel-03891381v3⟩

[ICFP 2011 (CFML)] Arthur Charguéraud. 2011. Characteristic formulae for the verification of imperative programs. In
Proceedings of the 16th ACM SIGPLAN international conference on Functional programming (ICFP'11). Association
for Computing Machinery, New York, NY, USA, 418–430. https://doi.org/10.1145/2034773.2034828

[POPL 2006] Zhaozhong Ni and Zhong Shao. 2006. Certified assembly programming with embedded code pointers. In
Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages (POPL
'06). Association for Computing Machinery, New York, NY, USA, 320–333. https://doi.org/10.1145/1111037.1111066

References

50

