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Staged Specification Logic for Verifying 

Higher-Order Imperative Programs

Darius Foo, Yahui Song, Wei-Ngan Chin
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Challenges with Effectful Higher-order Functions

• Existing (automated) verifier varies greatly:
• Pure only: Dafny, WhyML, Cameleer
• Type system (Rust) guarantees: Creusot, Prusti
• Interactive: Iris, CFML, Pulse/Steel (F*)

• When supported, specifications are imprecise

• Is there a precise and general way to support effectful higher-

order functions in automated program verifiers?
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(Separation logic) Invariant 
relating input to resultfoldr should not change the list

Some clients may want to operate 
only on certain kinds of lists f must preserve the invariant

Specification in Iris
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The Use of Abstract Properties

• foldr commits to an abstraction of f’s behavior

• The abstraction may not be precise enough for a given client

https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf (page 32)
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Difficult to handle cases like:

• Problem 1:  Mutable list

• Problem 2: Strengthened precondition

• Problem 3: Exceptions/effects 
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• Problem 1:  Mutable list

• Problem 2: Strengthened precondition

• Problem 3: Exceptions/effects 

Difficult to handle cases like:

Can we get rid of abstraction 
when designing spec for HO-functions?

10



We Propose “Staged Specification Logic”

Sequencing (Un)interpreted relations

1. Sequencing and uninterpreted relations
2. Recursive formulae
3. Re-summarization of recursion/lemmas
4. Compaction via bi-abduction

⟹ Defer abstraction until appropriate
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We can no longer assume anything about y at this point.

We also cannot assume anything about x!

1. Sequencing and uninterpreted relations
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2. Recursive formulae
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3. Re-summarization of recursion via lemmas
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3. Re-summarization of recursion via lemmas
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• Recovering abstraction: proving entailments
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3. Re-summarization of recursion via lemmas

Inductive
Step



• Recovering abstraction: proving entailments
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3. Re-summarization of recursion via lemmas

Bi-abduction



• Recovering abstraction: proving entailments
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3. Re-summarization of recursion via lemmas



Solutions with Staged Logic
• Problem 1:  Mutable list

• Problem 2: Strengthened precondition

• Problem 3: Exceptions/effects 
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Implementation & Evaluation
• 5K LoC on top of OCaml 5

• Reasonably low verification time

• Feasibility & increased expressiveness over existing systems

LoS/LoC = 0.37 = 2.49 = 0.73

inexpressible

incomparable
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• Staged logic for effectful higher-order programs
1. Sequencing and uninterpreted relations

2. Recursive formulae

3. Re-summarization of recursion/lemmas

4. Compaction via bi-abduction

⟹ Defer abstraction until appropriate

• Heifer – a new automated verifier: https://github.com/hipsleek/heifer
*Higher-order Effectful Imperative Function Entailments and Reasoning

Summary
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Specification and Verification for 

Unrestricted Algebraic Effects and Handling

Yahui Song, Darius Foo, Wei-Ngan Chin
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User-defined Effects and Handlers 

Example taken from “Effect Handlers in Multicore OCaml” slides by KC Sivaramakrishnan. 

This prints: 0  1  2  3  4
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Motivation Example

• Zero-shot handlers: abandon the continuation, just like exception handlers; 

• One-shot handlers: resume the continuation once, the assertion on line 8 succeeds; 

• Multi-shot handlers: resume the continuation more than once, the assertion on line 8 fails.

24



Existing verification techniques:
Ø multi-shot continuations + pure setting, e.g. [Song et al. 2022];
Ø heap manipulation + one-shot continuations, e.g. [de Vilhena and Pottier 2021];

Ø multi-shot + heap-manipulation, under a restricted frame rule, e.g. [de Vilhena 2022].

Motivation Example
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Protocol Based Approach [de Vilhena and Pottier 2021]

• Hazel & Maze: Model client-handler interactions in the form of protocols

• Globally define the effects that clients perform and the replies they receive from handlers

• Global assumptions to provide explicit (or early) interpretation effects
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Existing verification techniques:
Ø multi-shot continuations + pure setting, e.g. [Song et al. 2022];
Ø heap manipulation + one-shot continuations, e.g. [de Vilhena and Pottier 2021];

Ø multi-shot + heap-manipulation, under a restricted frame rule, e.g. [de Vilhena 2022].

Motivation Example
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Specification and Verification for 

Unrestricted Algebraic Effects and Handling

Yahui Song, Darius Foo, Wei-Ngan Chin

4th Sep @ ICFP 2024, Milan, Italy
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• Fully modular per-method verification (no global assumption)

• Sequencing, j1 ; j2 

• Uninterpreted relations for unhandled effects and unknown functions, E(x, r)
• Reducible try-catch logic constructs

• Normalization: compact each sequence of pre/post stages, via bi-abduction

• Use re-summarization (lemma) when handling recursive generated effects

result

input

Our Solution: Effectful Specification Logic (ESL)
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We propose ESL 
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We propose ESL 

Bi-abduction:
∃ z; req x→z;
     ens x→z+1; 
∃ b; req x→b ∧ b=1  

31



We propose ESL 

Bi-abduction:
∃ z; req x→z ∧ z+1=1;
     ens x→z+1 
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Try-Catch Reduction (Examples)
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Try-Catch Reduction (Examples)
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Intuition: 
Ø Explicit access to continuation
Ø Modular verification: 
• try-catch reduction
• normalization via bi-abduction 

Try-Catch Reduction (Examples)
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• The base case:

• When handling an effect, first reason about the behaviours of its continuation

• Instantiate the high-order predicate k using the continuation’s specification 

Try-Catch Reduction (Selected Rules)
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• The base case:

• When handling an effect, first reason about the behaviours of its continuation

• Instantiate the high-order predicate k using the continuation’s specification 

Try-Catch Reduction (Selected Rules)

effect-free (wrt Hɸ) after # 

Binding the effect free 
continuation to k 37



Higher-Order Function meets Unresolved Try-Catch Construct

Keep the try-catch constructs 

in the specification, which allows

modular verification.

Instantiate the

unknown function

Reducing the

try-catch construct
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Inductive Proofs via Lemmas

Conjunct each Flip result
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n=1, counter = 2, res = 1

n=2, counter = 6, res =1

n=3, counter=14, res =1

…

… , counter = 2n+1-2, res=1



Inductive Proofs via Lemmas

Conjunct each Flip result

Sum up how many back tracking branches leads to all true  40

n=1, counter = 2, res = 1

n=2, counter = 6, res =1

n=3, counter=14, res =1

…

… , counter = 2n+1-2, res=1



Inductive Proofs via Lemmas
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Inductive Proofs via Lemmas

• Proving via applying lemmas 
• Lemmas are proved based on:

ü Try-catch reduction 
ü Unfolding and rewriting (entailment rules)
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Implementation and Evaluation
• 5K LoC on top of OCaml 5

• Benchmark programs with features: (Ind) proof is inductive, (MultiS)multi-shot 
handlers, (ImpureC) impure continuations, (HO) program is higher-order. 

LoS/LoC < 30% 43
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Summary
ü  Scope: Zero/one/multi-shots + impure continuations, deep/shallow handlers, left/right recursion

ü  Effectful Specification Logic: Staged specifications + unhandled effects + try-catch logic constructs

ü  Hoare-style Verifier: ML-like language + imperative higher-order + algebraic effects.

ü  The Back-end Checker for ESL: Normalization rules + reduction process of try-catch constructs.

ü  Prototype (Multicore OCaml): Proven correctness, report on experimental results, and case studies.



Take Away: 

Summary
ü  Scope: Zero/one/multi-shots + impure continuations, deep/shallow handlers, left/right recursion

ü  Effectful Specification Logic: Staged specifications + unhandled effects + try-catch logic constructs

ü  Hoare-style Verifier: ML-like language + imperative higher-order + algebraic effects.

ü  The Back-end Checker for ESL: Normalization rules + reduction process of try-catch constructs.

ü  Prototype (Multicore OCaml): Proven correctness, report on experimental results, and case studies.

1) Try not to assume, for both HO functions and effects!

2) Modular specifications without global assumptions: try-catch constructs.  

3) Explicit access to the continuations, which can be composed as needed.
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My Research
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Future
Ø Staged Specification Logic

1) Summary/Lemma Inference;

2)  Non-terminating/liveness behaviours of effects handling;

3)  Apply staged specification to delimited control operators, e.g., shift/reset;

4) Combine staged specification with type system.

Ø Temporal Logic Based Bug Finding and Repair
1) Least Fixpoint & Greatest Fixpoint defined analysis : CTL + Datalog;

2) Liveness Checking: Termination + Safety checking + Fairness Assumption;

3) Temporal Logic Augmented LLM.

Ø …
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