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My Research
• PhD (2018 Aug – 2023 May)

Thesis: Symbolic Temporal Verification Techniques with Extended Regular Expressions
Keywords: Modularly (Scalability), Expressive Specification, Hoare-style Verification (source code level)

  Event-based reactive systems [ICFEM 2020]
  Synchronous languages like Esterel [VMCAI 2021]
  User-defined algebraic effects and handlers [APLAS 2022]
  Real-time systems [TACAS 2023]

• Research Fellow (2023 – now)

Applications
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My Research
• PhD (2018 Aug – 2023 May)

Thesis: Symbolic Temporal Verification Techniques with Extended Regular Expressions
Keywords: Modularly (Scalability), Expressive Specification, Hoare-style Verification (source code level)

  Event-based reactive systems [ICFEM 2020]
  Synchronous languages like Esterel [VMCAI 2021]
  User-defined algebraic effects and handlers [APLAS 2022]
  Real-time systems [TACAS 2023]

• Research Fellow (2023 – now)
Staged Specification Logic (heap safety):

 Higher-order Imperative Programs [FM 2024]; Algebraic Effects and Handlers [ICFP 2024]

Temporal Property guided Program Analysis/Repair:

Linear Temporal Property [FSE 2024]

Computation Tree Logic + Precise Loop Summaries [Under Submission]

Applications
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Yahui Song, Xiang Gao, Wenhua Li, Wei-Ngan Chin, Abhik Roychoudhury

ProveNFix: Temporal Property guided Program Repair
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Can temporal property analysis be modular?
“Each function is analysed only once and 

can be replaced by their verified properties.”
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Can temporal property analysis be modular?
“Each function is analysed only once and 

can be replaced by their verified properties.”
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Modular Analysis: 

1. Assume-guarantee paradigm (divide and conquer)

2. A set of forward/backwards reasoning rules



Some Forward Reasoning Rules
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Can temporal property analysis be modular?
“Each function is analysed only once and 

can be replaced by their verified properties.”
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Modular Analysis: 

1. Assume-guarantee paradigm (divide and conquer)

2. A set of forward/backwards reasoning rules

3. Entailment/Inclusion Checking :  x > 1 ⊑ x > 0 



Can temporal property analysis be modular?
“Each function is analysed only once and 

can be replaced by their verified properties.”

Three main difficulties：

1. Temporal logic property entailment checker.

2. Writing temporal specifications for each function is tedious and challenging.

3. The classic pre/post-conditions is not enough, e.g.,

“some meaningful operations can only happen if the return value of loading the certificate is positive”

9



Future-condition

Future-condition
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Future-condition based modular analysis

A collection of
specifications

Entailment Checking
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Future-condition based modular analysis

A collection of
specifications

Entailment Checking
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Can temporal property analysis be modular?
“Each function is analysed only once and 

can be replaced by their verified properties.”

Three main difficulties：

1. Temporal logic property entailment checker.

2. Writing temporal specifications for each function is tedious and challenging.

3. The classic pre/post-conditions is not enough, e.g.,

“some meaningful operations can only happen if the return value of loading the certificate is positive”

Future-condition!
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Specification inference via bi-abduction
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Specification inference via bi-abduction
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Specification inference via bi-abduction
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Specification inference via bi-abduction

Failed entailment: true ∧ Ɛ ⊑ ptr≠null ∧ 𝓕 (free(ptr))
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Can temporal property analysis be modular?

1. Temporal logic property entailment checker.

2. Writing temporal specifications for each function is tedious and challenging.

3. The classic pre/post-conditions is not enough, e.g.,

“some meaningful operations can only happen if the return value of loading the certificate is positive”

Primitive spec + spec inference!

“Each function is analysed only once and 

can be replaced by their verified properties.”

Three main difficulties：

Future-condition!
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Term rewriting system for regular expressions
• Flexible specifications, which can be combined with other logic;

• Efficient entailment checker with inductive proofs.  
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Term rewriting system for regular expressions
• Flexible specifications, which can be combined with other logic;

• Efficient entailment checker with inductive proofs.  

Examples:

x>2 ∧ E ⊑ x>1 ∧ (E ∨ F)

x>0 ∧ E ⊑ x>1 ∧ (E ∨ F)

true ∧ E ⊑ true ∧ (E . F)

(a ∨ b)★⊑ (a ∨ b ∨ bb)★ [Reoccur]

ɛ ⋅ (a ∨ b)★⊑ ɛ ⋅ (a ∨ b ∨ bb)★

a ⋅ (a ∨ b)★⊑ (a ∨ b ∨ bb)★ b ⋅ (a ∨ b)★ ⊑ …

(a ∨ b)★⊑ (a ∨ b ∨ bb)★

[Reoccur]
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Can temporal property analysis be modular?

A term rewriting system for regular expressions

Can!
“Each function is analysed only once and 

can be replaced by their verified properties.”

1. Temporal logic property entailment checker.

2. Writing temporal specifications for each function is tedious and challenging.

3. The classic pre/post-conditions is not enough, e.g.,

“some meaningful operations can only happen if the return value of loading the certificate is positive”

Primitive spec + spec inference!

Three main difficulties：

Future-condition!
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Experiment 1: detecting bugs
v 17 predefined primitive specs.

v ProveNFix is finding 72.2%

more true bugs, with a 17% 

loss of missing true bugs.



Automated repair via deductive synthesis

⇒ synthesis( ptr≠null ∧ _^* . (free(ptr)) )       ⇒

Example: true ∧ Ɛ ⊑ ptr≠null ∧ _^* . (free(ptr))



Automated repair via deductive synthesis

⇒ synthesis( ptr≠null ∧ _^* . (free(ptr)) )       ⇒

Example: true ∧ Ɛ ⊑ ptr≠null ∧ _^* . (free(ptr))

vOnly supporting inserting/deleting calls.

vDo need re-analysis.



Experiment 2: Repairing bugs

v 90% fix - null pointer dereferences, 

v 79% fix - memory leaks

v 100% fix - resource leaks. 25



Experiment 4: usefulness of spec inference
v 2 predefined primitive specs, OpenSSL-3.1.2, 556.3 kLoC,

v 143.11 seconds to generate future-conditions for 128 OpenSSL APIs

v Example: SSL_CTX_new (meth) ; // future : ((ret=0) /\ return (ret))
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• Compositional static analyzer via temporal properties.
• Specified 17 APIs; found 515 bugs from 1 million LOC; (on average) 90% fix rate.
• Specification: a novel future-condition.
• Specification inference via bi-abduction.
• The inferred spec can be used to analysis protocol applications, e.g., OpenSSL.

Summary

27

Take away
vSpecify a small set of properties once and analyse/repair a large number of programs

vSpecification inference enabled by projecting global spec to local spec. 



Yu Liu*, Yahui Song*, Martin Mirchev, Sergey Mechtaev, Abhik Roychoudhury

Computation Tree Logic Guided Program Repair 

With Precise Loop Summaries



Computational Tree Logic 

• Branching-time logic: 

• Goals: 

  - a more precise analysis for CTL properties in real code 

  - automated repair when CTL violations occur

A [ blue U red ]

E [ blue U red ]



CTL Properties and Violations

Example modified from “Reasoning about Nondeterminism in Programs” PLDI 2013

EG(x=1 ⇒ AF(x=0))

“Whenever x = 1, then eventually x = 0.”

AG(x=1 ⇒ AF(x=0))

If we restrict the nondeterministic choice at line 3 

To be y >= 1, the the following holds as well. 



CTL Properties and Violations

Example modified from “Reasoning about Nondeterminism in Programs” PLDI 2013

EG(x=1 ⇒ AF(x=0))

“Whenever x = 1, then eventually x = 0.”

AG(x=1 ⇒ AF(x=0))

If we restrict the nondeterministic choice at line 3 

To be y >= 1, the the following holds as well. 

“Termination is a sub-problem of liveness properties. ”

                               --- [POPL07, TACAS12, CAV2015, POPL18, PLDI19, PLDI21]



Existing analyses for CTL
Ø CTL model checking: 

      Recursively labeling the states of a finite state machine with the CTL sub-formula. 

      Termination analysis: none

ØFaster temporal reasoning for infinite-state programs (T2 [PLDI 13, FMCAD 14]): 

      Iteratively synthesize preconditions asserting the satisfaction of CTL sub-formulas

      Termination analysis: counterexample-based ranking function synthesis

ØAbstract interpretation of CTL properties (Function [ESOP 17]): 

      Mixed usage of over-approximation (∀), and under-approximation for (∃). 

      Termination analysis: using widening and dual widening at loop heads



???



We propose “CTLexpert”

1. CTL property ⇒ Stratified Datalog rules

2. Target program (CFG)⇒Guarded 𝜔-regular expression⇒Datalog facts/rules

3. The Datalog execution checks CTL properties precisely

4. When buggy, Datalog based repair comes in



We propose “CTLexpert”

1. CTL property ⇒ Stratified Datalog rules

2. Target program (CFG)⇒Guarded 𝜔-regular expression⇒Datalog facts/rules

3. The Datalog execution checks CTL properties precisely

4. When buggy, Datalog based repair comes in
Goals/Benefits:
1. Precise loop summaries
2. Find all the repair solutions



CFG to Datalog



Disabled transitions!

CFG to Datalog



Patches: (1) deleting the newly added “Odd” and “Lt” facts
(2) adding a predicate “Eq("y",1, 5)” 

CFG to Datalog



Loops to Guarded 𝜔-RE



Loops to Guarded 𝜔-RE

• Inner loop: RF = {step-m-1, n}

Ranking function: when RF >= 0, stays in the loop, and when RF < 0, exits the loop.



Loops to Guarded 𝜔-RE

• Inner loop: RF = {step-m-1, n}

• Outer loop body, [0/m] :
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Loops to Guarded 𝜔-RE

• Inner loop: RF = {step-m-1, n}

• Outer loop body, [0/m] :

• Outer loop: RF = {n-step}

Since step=8, we have proved termination !

Ranking function: when RF >= 0, stays in the loop, and when RF < 0, exits the loop.

[0/m]



???

RQ 1: verifying CTL properties



Limitation 1:

limited abilities 

when there are 

nondeterministic 

choices for the 

branching.

RQ 1: verifying CTL properties



RQ 2: Finding real code CTL bugs
• Benchmark:

Shi et al. [FSE 22] 

• Extracted main segments 
of the bugs into smaller 
programs (~100 Loc) 

• Maintained features, data 
structures, pointer
arithmetic, etc.



• Benchmark:
Shi et al. [FSE 22] 

• Extracted main segments 
of the bugs into smaller 
programs (~100 Loc) 

• Maintained features, data 
structures, pointer
arithmetic, etc.

• Limitation 2: semantically
decreasing return values,
e.g., the “read” function.

RQ 2: Finding real code CTL bugs



Limitation 3:
to preserve the
completeness,
we haven’t
deployed much
of the space
pruning
techniques.

RQ 3: Repairing CTL bugs



Summary 

• Showing the feasibility of finding/repairing real-world bugs using CTL specs.

• Analysing/repairing both safety and liveness properties.

• Allow input ranking functions via annotations or ranking function synthesis tools, which can 
help the analyser perform better when needed.

Thank you for 
your attention! 

1) Large scale termination/non-terminating prover

2) Liveness checking for protocols: Termination + Safety checking + Fairness Assumption.

Future Work 
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