
Temporal Property guided Program Analysis/Repair

Yahui Song
Research Fellow @ National University of Singapore (NUS)

September 2024

1

My Research
• PhD (2018 Aug – 2023 May)

Thesis: Symbolic Temporal Verification Techniques with Extended Regular Expressions
Keywords: Modularly (Scalability), Expressive Specification, Hoare-style Verification (source code level)

 Event-based reactive systems [ICFEM 2020]
 Synchronous languages like Esterel [VMCAI 2021]
 User-defined algebraic effects and handlers [APLAS 2022]
 Real-time systems [TACAS 2023]

• Research Fellow (2023 – now)

Applications

2

My Research
• PhD (2018 Aug – 2023 May)

Thesis: Symbolic Temporal Verification Techniques with Extended Regular Expressions
Keywords: Modularly (Scalability), Expressive Specification, Hoare-style Verification (source code level)

 Event-based reactive systems [ICFEM 2020]
 Synchronous languages like Esterel [VMCAI 2021]
 User-defined algebraic effects and handlers [APLAS 2022]
 Real-time systems [TACAS 2023]

• Research Fellow (2023 – now)
Staged Specification Logic (heap safety):

 Higher-order Imperative Programs [FM 2024]; Algebraic Effects and Handlers [ICFP 2024]

Temporal Property guided Program Analysis/Repair:

Linear Temporal Property [FSE 2024]

Computation Tree Logic + Precise Loop Summaries [Under Submission]

Applications

3

Yahui Song, Xiang Gao, Wenhua Li, Wei-Ngan Chin, Abhik Roychoudhury

ProveNFix: Temporal Property guided Program Repair

4

Can temporal property analysis be modular?
“Each function is analysed only once and

can be replaced by their verified properties.”

5

Can temporal property analysis be modular?
“Each function is analysed only once and

can be replaced by their verified properties.”

6

Modular Analysis:

1. Assume-guarantee paradigm (divide and conquer)

2. A set of forward/backwards reasoning rules

Some Forward Reasoning Rules

7

|- { }
Entailment Checking

Can temporal property analysis be modular?
“Each function is analysed only once and

can be replaced by their verified properties.”

8

Modular Analysis:

1. Assume-guarantee paradigm (divide and conquer)

2. A set of forward/backwards reasoning rules

3. Entailment/Inclusion Checking : x > 1 ⊑ x > 0

Can temporal property analysis be modular?
“Each function is analysed only once and

can be replaced by their verified properties.”

Three main difficulties：

1. Temporal logic property entailment checker.

2. Writing temporal specifications for each function is tedious and challenging.

3. The classic pre/post-conditions is not enough, e.g.,

“some meaningful operations can only happen if the return value of loading the certificate is positive”

9

Future-condition

Future-condition

10

Future-condition based modular analysis

A collection of
specifications

Entailment Checking

11

Future-condition based modular analysis

A collection of
specifications

Entailment Checking

12

Can temporal property analysis be modular?
“Each function is analysed only once and

can be replaced by their verified properties.”

Three main difficulties：

1. Temporal logic property entailment checker.

2. Writing temporal specifications for each function is tedious and challenging.

3. The classic pre/post-conditions is not enough, e.g.,

“some meaningful operations can only happen if the return value of loading the certificate is positive”

Future-condition!

13

Specification inference via bi-abduction

14

Specification inference via bi-abduction

15

Specification inference via bi-abduction

16

Specification inference via bi-abduction

Failed entailment: true ∧ Ɛ ⊑ ptr≠null ∧ 𝓕 (free(ptr))

17

Can temporal property analysis be modular?

1. Temporal logic property entailment checker.

2. Writing temporal specifications for each function is tedious and challenging.

3. The classic pre/post-conditions is not enough, e.g.,

“some meaningful operations can only happen if the return value of loading the certificate is positive”

Primitive spec + spec inference!

“Each function is analysed only once and

can be replaced by their verified properties.”

Three main difficulties：

Future-condition!

18

Term rewriting system for regular expressions
• Flexible specifications, which can be combined with other logic;

• Efficient entailment checker with inductive proofs.

19

Term rewriting system for regular expressions
• Flexible specifications, which can be combined with other logic;

• Efficient entailment checker with inductive proofs.

Examples:

x>2 ∧ E ⊑ x>1 ∧ (E ∨ F)

x>0 ∧ E ⊑ x>1 ∧ (E ∨ F)

true ∧ E ⊑ true ∧ (E . F)

(a ∨ b)★⊑ (a ∨ b ∨ bb)★ [Reoccur]

ɛ ⋅ (a ∨ b)★⊑ ɛ ⋅ (a ∨ b ∨ bb)★

a ⋅ (a ∨ b)★⊑ (a ∨ b ∨ bb)★ b ⋅ (a ∨ b)★ ⊑ …

(a ∨ b)★⊑ (a ∨ b ∨ bb)★

[Reoccur]

20

Can temporal property analysis be modular?

A term rewriting system for regular expressions

Can!
“Each function is analysed only once and

can be replaced by their verified properties.”

1. Temporal logic property entailment checker.

2. Writing temporal specifications for each function is tedious and challenging.

3. The classic pre/post-conditions is not enough, e.g.,

“some meaningful operations can only happen if the return value of loading the certificate is positive”

Primitive spec + spec inference!

Three main difficulties：

Future-condition!

21

Experiment 1: detecting bugs
v 17 predefined primitive specs.

v ProveNFix is finding 72.2%

more true bugs, with a 17%

loss of missing true bugs.

Automated repair via deductive synthesis

⇒ synthesis(ptr≠null ∧ _^* . (free(ptr))) ⇒

Example: true ∧ Ɛ ⊑ ptr≠null ∧ _^* . (free(ptr))

Automated repair via deductive synthesis

⇒ synthesis(ptr≠null ∧ _^* . (free(ptr))) ⇒

Example: true ∧ Ɛ ⊑ ptr≠null ∧ _^* . (free(ptr))

vOnly supporting inserting/deleting calls.

vDo need re-analysis.

Experiment 2: Repairing bugs

v 90% fix - null pointer dereferences,

v 79% fix - memory leaks

v 100% fix - resource leaks. 25

Experiment 4: usefulness of spec inference
v 2 predefined primitive specs, OpenSSL-3.1.2, 556.3 kLoC,

v 143.11 seconds to generate future-conditions for 128 OpenSSL APIs

v Example: SSL_CTX_new (meth) ; // future : ((ret=0) /\ return (ret))

26

• Compositional static analyzer via temporal properties.
• Specified 17 APIs; found 515 bugs from 1 million LOC; (on average) 90% fix rate.
• Specification: a novel future-condition.
• Specification inference via bi-abduction.
• The inferred spec can be used to analysis protocol applications, e.g., OpenSSL.

Summary

27

Take away
vSpecify a small set of properties once and analyse/repair a large number of programs

vSpecification inference enabled by projecting global spec to local spec.

Yu Liu*, Yahui Song*, Martin Mirchev, Sergey Mechtaev, Abhik Roychoudhury

Computation Tree Logic Guided Program Repair

With Precise Loop Summaries

Computational Tree Logic

• Branching-time logic:

• Goals:

 - a more precise analysis for CTL properties in real code

 - automated repair when CTL violations occur

A [blue U red]

E [blue U red]

CTL Properties and Violations

Example modified from “Reasoning about Nondeterminism in Programs” PLDI 2013

EG(x=1 ⇒ AF(x=0))

“Whenever x = 1, then eventually x = 0.”

AG(x=1 ⇒ AF(x=0))

If we restrict the nondeterministic choice at line 3

To be y >= 1, the the following holds as well.

CTL Properties and Violations

Example modified from “Reasoning about Nondeterminism in Programs” PLDI 2013

EG(x=1 ⇒ AF(x=0))

“Whenever x = 1, then eventually x = 0.”

AG(x=1 ⇒ AF(x=0))

If we restrict the nondeterministic choice at line 3

To be y >= 1, the the following holds as well.

“Termination is a sub-problem of liveness properties. ”

 --- [POPL07, TACAS12, CAV2015, POPL18, PLDI19, PLDI21]

Existing analyses for CTL
Ø CTL model checking:

 Recursively labeling the states of a finite state machine with the CTL sub-formula.

 Termination analysis: none

ØFaster temporal reasoning for infinite-state programs (T2 [PLDI 13, FMCAD 14]):

 Iteratively synthesize preconditions asserting the satisfaction of CTL sub-formulas

 Termination analysis: counterexample-based ranking function synthesis

ØAbstract interpretation of CTL properties (Function [ESOP 17]):

 Mixed usage of over-approximation (∀), and under-approximation for (∃).

 Termination analysis: using widening and dual widening at loop heads

???

We propose “CTLexpert”

1. CTL property ⇒ Stratified Datalog rules

2. Target program (CFG)⇒Guarded 𝜔-regular expression⇒Datalog facts/rules

3. The Datalog execution checks CTL properties precisely

4. When buggy, Datalog based repair comes in

We propose “CTLexpert”

1. CTL property ⇒ Stratified Datalog rules

2. Target program (CFG)⇒Guarded 𝜔-regular expression⇒Datalog facts/rules

3. The Datalog execution checks CTL properties precisely

4. When buggy, Datalog based repair comes in
Goals/Benefits:
1. Precise loop summaries
2. Find all the repair solutions

CFG to Datalog

Disabled transitions!

CFG to Datalog

Patches: (1) deleting the newly added “Odd” and “Lt” facts
(2) adding a predicate “Eq("y",1, 5)”

CFG to Datalog

Loops to Guarded 𝜔-RE

Loops to Guarded 𝜔-RE

• Inner loop: RF = {step-m-1, n}

Ranking function: when RF >= 0, stays in the loop, and when RF < 0, exits the loop.

Loops to Guarded 𝜔-RE

• Inner loop: RF = {step-m-1, n}

• Outer loop body, [0/m] :

Ranking function: when RF >= 0, stays in the loop, and when RF < 0, exits the loop.

Loops to Guarded 𝜔-RE

• Inner loop: RF = {step-m-1, n}

• Outer loop body, [0/m] :

• Outer loop: RF = {n-step}

Since step=8, we have proved termination !

Ranking function: when RF >= 0, stays in the loop, and when RF < 0, exits the loop.

[0/m]

???

RQ 1: verifying CTL properties

Limitation 1:

limited abilities

when there are

nondeterministic

choices for the

branching.

RQ 1: verifying CTL properties

RQ 2: Finding real code CTL bugs
• Benchmark:

Shi et al. [FSE 22]

• Extracted main segments
of the bugs into smaller
programs (~100 Loc)

• Maintained features, data
structures, pointer
arithmetic, etc.

• Benchmark:
Shi et al. [FSE 22]

• Extracted main segments
of the bugs into smaller
programs (~100 Loc)

• Maintained features, data
structures, pointer
arithmetic, etc.

• Limitation 2: semantically
decreasing return values,
e.g., the “read” function.

RQ 2: Finding real code CTL bugs

Limitation 3:
to preserve the
completeness,
we haven’t
deployed much
of the space
pruning
techniques.

RQ 3: Repairing CTL bugs

Summary

• Showing the feasibility of finding/repairing real-world bugs using CTL specs.

• Analysing/repairing both safety and liveness properties.

• Allow input ranking functions via annotations or ranking function synthesis tools, which can
help the analyser perform better when needed.

Thank you for
your attention!

1) Large scale termination/non-terminating prover

2) Liveness checking for protocols: Termination + Safety checking + Fairness Assumption.

Future Work

[ICFEM 2020] Yahui Song and Wei-Ngan Chin. Automated temporal verification of integrated dependent effects. In Shang-
Wei Lin, Zhe Hou, and Brendan P. Mahony, editors, Formal Methods and Software Engineering - 22nd International
Conference on Formal Engineering Methods, Singapore, Singapore, March 1-3, 2021, Proceedings, volume 12531 of Lecture
Notes in Computer Science, pages 73–90. Springer, 2020. doi: 10.1007/978-3-030-63406-3_5. URL
https://doi.org/10.1007/ 978-3-030-63406-3_5.

[VMCAI 2021] Yahui Song and Wei-Ngan Chin. A synchronous effects logic for temporal verification of pure esterel. In Fritz
Henglein, Sharon Shoham, and Yakir Vizel, editors, Verification, Model Checking, and Abstract Interpretation - 22nd
International Conference, Copenhagen, Denmark, January 17-19, 2021, Proceedings, volume 12597 of Lecture Notes in
Computer Science, pages 417–440. Springer, 2021. doi: 10.1007/978-3-030-67067-2_19. URL https://doi.org/10.1007/
978-3-030-67067-2_19.

[APLAS 2022] Yahui Song, Darius Foo, and Wei-Ngan Chin. Automated temporal verification for algebraic effects. In Ilya
Sergey, editor, Programming Languages and Systems - 20th Asian Symposium, Auckland, New Zealand, December 5, 2022,
Proceedings, volume 13658 of Lecture Notes in Computer Science, pages 88–109. Springer, 2022. doi: 10.1007/978-3-031-
21037-2_5. URL https://doi.org/10.1007/ 978-3-031-21037-2_5.

References

52

[TACAS 2023] Yahui Song and Wei-Ngan Chin. Automated verification for real-time systems - via implicit clocks and an
extended antimirov algorithm. In Sriram Sankaranarayanan and Natasha Sharygina, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 29th International Conference, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Paris, France, April 22-27, 2023, Proceedings, Part I, volume 13993 of Lecture
Notes in Computer Science, pages 569–587. Springer, 2023. doi: 10.1007/978-3-031-30823-9_29. URL https:
//doi.org/10.1007/978-3-031-30823-9_29.

[FSE 2024] Yahui Song, Xiang Gao, Wenhua Li, Wei-Ngan Chin, and Abhik Roychoudhury. Provenfix: Temporal property-
guided program repair. Proceedings of the ACM on Software Engineering, 1(FSE):226–248, 2024b.

[FM 2024] Darius Foo, Yahui Song, and Wei-Ngan Chin. Staged specifications for automated verification of higher-order
imperative programs. CoRR, abs/2308.00988, 2023. doi: 10.48550/ARXIV.2308.00988. URL
https://doi.org/10.48550/arXiv.2308. 00988.

[ICFP 2024] Yahui Song, Darius Foo, and Wei-Ngan Chin. Specification and verification for unrestricted algebraic effects and
handling. Proc. ACM Program. Lang., 8(ICFP), aug 2024a. doi: 10.1145/3674656. URL https://doi.org/10.1145/3674656.

References

53

