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Abstract. This paper formalizes future conditions, which complement
traditional pre- and post-conditions to provide a more comprehensive
specification of each function’s behaviour and expectation. Pre-conditions
govern the required states before each function call, while post-conditions
define the immediate outcomes (post-states) upon completion. Future
conditions extend this paradigm by specifying expected temporal behav-
iors and states that manifest after the function call has finished, poten-
tially affecting subsequent operations or program states. Together, these
three types of conditions form a robust specification mechanism for rea-
soning about API behaviors across various temporal contexts. However,
existing techniques for reasoning about future conditions have three key
limitations: inefficient entailment checking, under-approximation of pro-
gram behaviors, and bounded loop unrolling. To address these challenges,
we propose a set of over-approximating Hoare-style forward rules that
accommodate future conditions that are processed once per method dec-
laration. Moreover, we propose a novel solution for modelling recursive
behaviors via a bag of future conditions, which can be heuristically syn-
thesized and verified in the verification system. We formally prove the
soundness of our proposal in Coq and use experimental results to demon-
strate its effectiveness in detecting non-trivial, real-world API misuses.

Keywords: Future Conditions · Hoare Logic · Linear Temporal Logic ·
Separation Logic · Coq Proof Assistant

1 Introduction

Pre-conditions and post-conditions are fundamental concepts in formal methods
of software engineering, particularly in the context of design by contract [11].
Considering function definitions as the smallest software components, classic
pre- and post-conditions provide constraints for behaviors before the function
call and expected outcomes from the current function execution, respectively.
However, they are inflexible in expressing constraints on program behavior after
the function call has completed. This limitation becomes particularly apparent
when modeling complex API behaviors, where the impact of a function call may
extend beyond its immediate execution context. For instance, they struggle to
? Corresponding author
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capture requirements such as: “Opening a read-only file should not be followed
by any writing operations”; “Memory allocated by malloc must be finally freed
before exiting the program”; or “If loading a certificate returns an error code,
the program must exit in the next step”, etc. These examples illustrate the
need for a mechanism to specify and reason about program behavior beyond the
immediate scope of a function call, highlighting a limitation in the expressiveness
of traditional pre- and post-conditions.

Prior work [15] proposes future conditions to express the aforementioned
constraints on program behavior after function calls have been completed. When
combined with pre- and post-conditions, this triplet-style specification effectively
encapsulates a usage protocol for each function and the key APIs involved. For
example, the specification for malloc is written in Fig. 1 1. Its pre/post-condition
state that the input value should be positive and when a pointer is successfully
allocated, i.e., res 6=null , it triggers an event malloc(res), where res denotes the
return value. We use ε for empty traces and _? for permitting any traces. Its
future-condition enforces that the allocated pointer should be finally freed (F
denotes the temporal operator finally), which effectively prevents a memory-leak.
The free function triggers an event free(ptr) and its future condition ensures that
after deallocation, the input pointer cannot be accessed during its lifetime (G
denotes the temporal operator globally), which effectively prevents double-free
or use-after-free violations.

void *malloc (size_t size);
// pre: size>0 ∧ _?

// post: (res=null ∧ ε) ∨ (res 6=null ∧ malloc(res))
// future: (res=null ∧ _?) ∨ (res 6=null ∧ F free(res))

void free (void *ptr);
// pre: true
// post: true ∧ free(ptr)
// future: true∧ G !_(ptr)

Fig. 1. Triplet specifications for malloc and free APIs, taken from [15]

Future conditions provide a general mechanism for specifying both safety
and liveness properties through linear temporal logic (LTL) formulas, including
resource usage, null-pointer dereferences or unchecked return values, etc.

However, prior work [15] for detecting violations of future conditions suf-
fers from several limitations. First, it uses an inefficient entailment checking
strategy, where future conditions must be checked against all subsequent code.
For instance, when malloc is called, the behaviors of the following code must
satisfy malloc’s future conditions. This results in unnecessary repeated check-
ing of future conditions. Second, it prioritises bug-finding (no incorrectly flagged
safe code) over soundness (no missed violations), which under-approximates pro-
gram behavior. This involves arbitrarily discarding paths and handling loops via
1 The specifications are in the form of

∨
(π ∧ θ), i.e., a disjunctive set of conjunctions

between pure arithmetic constraints (π) and trace constraints (θ).
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bounded unrolling, risking unsoundness by omitting critical behaviors. Lastly, a
key unresolved challenge is the representation of future conditions generated by
recursive execution with recursive data structures.

To address the aforementioned challenges, this paper utilizes a set of Hoare-
style verification rules to enable sound reasoning about future conditions. For
effectful loops working with recursive data structures, we introduce predicates
that represent a bag of items for both traces and future conditions, where the
commutative law applies. To enhance automation, we employ a lightweight loop
invariant synthesis procedure, whose output is constructed using such predicates
and can be reliably verified by the proposed verification system. Overall, our ap-
proach aims to establish a verification framework based on over-approximation,
designed to soundly prove the absence of violations of future conditions.

1. We introduce a set of sound forward reasoning rules to propagate future
conditions efficiently. These rules employ over-approximation of behaviors,
guaranteeing the absence of false negatives (missed violations) when verifying
future conditions. The formal definition and proof of soundness for these rules
are presented in Theorem 3.

2. To facilitate the forward reasoning process, we formalize a set of trace inclu-
sion checking rules and a set of trace subtraction rules. We define and prove
their soundness in Theorem 1 and Theorem 2, respectively.

3. We utilize predicates to represent collections of traces and future conditions
and implement a trace invariant synthesis procedure that generates these
predicates, which our verification rules can then reliably verify.

4. We demonstrate the effectiveness of the proposed verification framework
through experimental results and case studies. All lemmas and theorems
presented have been proven in Coq. Our artifact is publicly available [2].

2 Overview and Motivating Examples

This section outlines the current solution and challenges for reasoning about
future conditions, highlighting our contributions through examples.

2.1 The Current Solution

The essence of reasoning future conditions in [15] can be captured by the follow-
ing rule for function calls, where proof obligations are highlighted:

f (x) [Φpre ,Φpost ,Φfuture ] ∈ E
Φ v Φpre {Φ ◦ Φpost} e {Φe} Φe v Φfuture

{Φ} f (x) ; e {Φpost ◦ Φe}
[FV -Call -Inefficient ]

A traditional Hoare-style verification rule for function calls works roughly as
follows: it retrieves the callee f ’s specification from the environment E , and if the
current program state Φ entails (v) the callee’s pre-condition Φpre , it extends
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the program state with the callee’s post-condition. Here “Φ ◦ Φpost ” 2 means to
sequentially compose two specifications. Now, having Φfuture , [15] extends the
rule with one more proof obligation: the behavior of e (where e denotes the rest
of code following the call to f(x)), as captured by Φe, entails the callee’s future
condition, effectively imposing constraints on the code e after the call.

While this solution is correct, it suffers from repeated invocation(s) of en-
tailment checking, as demonstrated in Fig. 2. The example includes multiple
memory operations, with a use-after-free (UAF) bug at line 7. According to the
specifications in Fig. 1, every call to malloc or free necessitates checking the sub-
sequent code against the specified future conditions. We mark all triggered trace
entailment checks in blue, and the UAF bug is detected when an entailment fail-
ure occurs at line 5. This approach introduces redundant checks – for example,
events free(buf2 ) (generated from line 5) and free(buf1 ) (generated from line
8) are verified at least twice and four times, respectively. The inefficiency esca-
lates further when future conditions are applied to operations like strncpy. In
the worst case, the checking process exhibits (informally) quadratic complexity
relative to program length. To overcome this limitation, we propose an improved
specification method for future conditions that efficiently detects the UAF bug
while eliminating redundant re-analysis.

1. int main(int argc, char **argv){
2. char *buf1, *buf2, *buf3;
3. buf1 = malloc(1);

// malloc(buf2 )·free(buf2 )·malloc(buf3 )·strncpy(buf2 )·free(buf1 )·free(buf3 )vF(free(buf1 ))
4. buf2 = malloc(1);

// free(buf2 )·malloc(buf3 )·strncpy(buf2 )·free(buf1 )·free(buf3 )vF(free(buf2 ))
5. free(buf2);

// malloc(buf3 )·strncpy(buf2 )
:::::::::::

·free(buf1 )·free(buf3 ) 6v G(!_(buf2 ))
:::::::::

⇐ Bug Detected!

6. buf3 = malloc(1);
// strncpy(buf2 )·free(buf1 )·free(buf3 ) vF(free(buf3 ))

7. strncpy(buf2,argv[1],1); //A UAF bug here!
8. free(buf1);

// free(buf3 )vG(!_(buf1 ))
9. free(buf3);}

// ε v G(!_(buf3 ))

Fig. 2. Detecting a UAF bug from CWE-416 [5]

2.2 Towards Efficient Propagation for Future Conditions

We propose a simplified specification syntax that reduces redundancy by as-
sociating future conditions with post-conditions, thereby eliminating unneces-
sary arithmetic constraints. As shown in Fig. 3, each specification comprises
2 The interpretation of ◦ depends on the specific logic employed in Φ: for pure arith-
metic: ◦ ≡ ∧ (logical conjunction); for separation logic: ◦ ≡ ∗ (separating conjunc-
tion); for linear temporal logic: ◦ ≡ · (temporal concatenation), etc.
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a precondition (req clause), and a post summary (ens clause) structured as
“req:π ens:

∨
(π ; θ ;F )”. Here, π is the precondition, and each disjunctive case

in the post summary includes: a post-state pure constraint π, a trace formula θ
recording triggered events and an associated future condition F . We use _? for
the default future condition, which imposes no constraints on future executions.

The new specifications of malloc and free are semantically equivalent to their
original version shown in Fig. 1. For strncpy, it triggers an event involving its
first argument. We show in Fig. 4 how the revised specification achieves both
conciseness and linear-complexity propagation of future conditions.

void *malloc (size_t size);
//req: size > 0 ens: (res null ; ε ; _?) ∨ (res 6= null ;malloc(res) ;F(free(res)))

void free (void *ptr);
//req: true ens: (res () ; free(ptr) ;G(!_(ptr)))

::::::::
text

char *strncpy (char *dest , const char *src , size_t n)
//req: true ens: (res dest ; strncpy(dest) ; _?)

::::
text

Fig. 3. An improved way for specifying future conditions for memory usage APIs

Program states are captured in the form of
{∨

(π ; θ ;F )
}
. By associating

future conditions with program states, we can conjunctively combine different
future conditions and compute the next states through trace subtraction. Fig. 4
:::::::::
highlights these incremental updates to future conditions. In particular, at line
5, subtracting the event “free(buf2 )” from “F(free(buf2 ))” yields _?, indicating
the fulfillment of the deallocation obligation. At line 7, the UAF bug is detected

2. char *buf1, *buf2, *buf3;{
(∃buf1 , buf2 , buf3 . true ; ε ;_?)

}
3. buf1 = malloc(1);{

(∃buf1 , buf2 , buf3 . buf1 6=null ; malloc(buf1 ) ;F(free(buf1 ))
::::::::::

)
}

4. buf2 = malloc(1);{
(∃buf1 , buf2 , buf3 . buf1 6=null ∧ buf2 6=null ; malloc(buf1 ) ·malloc(buf2 ) ;
textF(free(buf1 ))∧F(free(buf2 ))

::::::::::::
)
}

5. free(buf2);{
(∃buf1 , buf2 , buf3 . buf1 6=null ∧ buf2 6=null ; malloc(buf1 ) ·malloc(buf2 ) · free(buf2 ) ;
textF(free(buf1 ))∧_? ∧G(!_(buf2 ))

:::::::::::::::
)
}

6. buf3 = malloc(1);{
(∃buf1 , buf2 , buf3 . buf1 6=null ∧ buf2 6=null ∧ buf3 6=null ; malloc(buf1 ) ·malloc(buf2 )
text · free(buf2 ) ·malloc(buf3 ) ;F(free(buf1 ))∧G(!_(buf2 ))∧F(free(buf3 ))

::::::::::::
)
}

7. strncpy(buf2,argv[1],1);{
(∃buf1 , buf2 , buf3 . buf1 6=null ∧ buf2 6=null ∧ buf3 6=null ; malloc(buf1 ) ·malloc(buf2 )
text · free(buf2 ) ·malloc(buf3 ) · strncpy(buf2 ) ;F(free(buf1 ))∧⊥∧F(free(buf3 )))⇐7

}
FC Violation Found: subtracting “strncpy(buf2 )” from “G(!_(buf2 ))” leads to false!

Fig. 4. Detecting the UAF bug in Fig. 2 in a more efficient way



6 Yahui Song Darius Foo Wei-Ngan Chin

when we subtract the event “strncpy(buf2 )” from “G(!_(buf2 ))”, producing ⊥
(false) – a contradiction that indicates the invalid usage of “buf2 ”.

Our approach processes future conditions once per method declaration, re-
quiring only a single analysis pass per event. The key idea is to embed future con-
ditions into program states and support logical operations – such as conjunctive
obligations and trace subtraction – over these future conditions. We formalize
this approach through a set of novel forward rules and prove their soundness in
Sec. 4. Next, we illustrate how to specify and verify future conditions for loops.

2.3 Predicates for Bags of Traces and Future Conditions

1 void* mallocN(int n,void **arr ,){
2 int i = 0;
3 while (i < n) {
4 arr[i] = malloc (4); i = i+1;}
5 return *arr;}
6

7 void main () {
8 void *arr [5]; mallocN (5, arr);
9 free(arr [0]);/* memory leak */}

Fig. 5. Iteratively malloc n times

The program in Fig. 5 cre-
ates an array of length n
and iteratively invokes malloc
for each element. The speci-
fication for mallocN, given in
Fig. 6, comprises two pred-
icates: “predt(B , i)” for trig-
gered traces, and “predf (B , i)”
for the future conditions. Pred-
icates are in the form of
“ΛBi (

∨
(π∧θ))”, where i denotes

the iterator and B denotes the
bag of elements that satisfies the specification

∨
(π∧ θ), allowing flexible specifi-

cation under different arithmetic constraints. Predicates enforce commutativity,
discarding trace order sensitivity among each element in the bag.

In Fig. 7, we demonstrate the forward reasoning for main. After the function
call to mallocN(5, arr), the predicates are instantiated with the concrete bag,
i.e., [0..5). At line 9, when the first element is freed, the future condition predicate

mallocN (n, arr) ≡ req: length(arr)≥n

ens: (∃i. true ; predt([0 ..n), i) ; predf ([0 ..n), i))

predt(B , i) ≡ ΛBi (arr [i ] 6= null ∧malloc(arr [i ])) ∨ (arr [i ] null ∧ ε)

predf (B , i) ≡ ΛBi (arr [i ] 6= null ∧ F(free(arr [i ])))

Fig. 6. Specification for mallocN

8. void *arr[5]; mallocN (5, arr);{
(∃arr , i. length(arr) 5 ; predt([0 ..5 ), i) ; predf ([0 ..5 ), i)

:::::::::::
)
}

9. free(arr[0]);{
(∃arr , i. length(arr) 5 ; predt([0 ..5 ), i) · free(arr [0 ]) ; predf ([1 ..5 ), i)∧G(!_(arr [0 ]))

::::::::::::::::::::::::
)
}

FC Violation Found: empty trace “ε” does not satisfy the obligation “predf ([1 ..5 ), arr)”!

Fig. 7. Forward reasoning for main and detecting the memory leak in Fig. 5
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updates to a new bag [1..5), reflecting the removal of arr[0]. By the end, the
memory leak is detected via a failed entailment checking, that the empty trace
is not always permitted in the future condition “predf ([1 ..5 ), i)”. To automate
this process, we introduce a heuristic-based synthesis for predicate generation,
and enable the predicate propagation in the trace subtraction rules.

Remark. Such memory usage violations can also be detected by static analyzers
such as Pulse (a memory safety checker in Infer [10]), which relies on separation
logic. However, Pulse requires an additional side check upon function exit to
account for residual footprints when detecting memory leaks. In contrast, our
approach employs a lightweight, general-purpose temporal logic to explicitly
define obligations, avoiding the need for implicit checks. This not only simplifies
verification but also extends applicability beyond memory safety, enabling the
verification of both safety and liveness properties. We showcase the variety of
bug types that can be handled by specifying future conditions in Table 2.

3 Target Language and Specifications

We target an imperative, first-order, call-by-value core language, defined in Fig.
8. A program P comprises a list of function declarations Func. Here, we use
the overline to denote a finite list of items, for example, x refers to a list of
variables, x1, . . . , xn. Each function has a name f , formal arguments x, and an
expression-oriented body e. Function specifications contains a pre-condition π,
and a post summary ∆, which is a set of disjunctive tuples. Each three-element
tuple contains: a pure formula π, a trace formula θ, and a future condition F .

We utilize π as the basic logical formula, capturing the Presburger arithmetic
conditions on program inputs and local variables. Values include variables and
constants ranging from integers, Boolean, unit, null, and * for non-deterministic
values. Expressions include sequencing, function calls, conditionals, assignments,

(Program) P ::= Func (Function Decl .) Func ::= f (x){e}
(Post Summary) ∆ ::=

∨
(π ; θ ; F ) (Specification) [req:π ens:∆]

(Expressions) e ::= v | x := e | local x | e1 ; e2 | ev(A) |
if b e1 e2 | while π do e | f (x) | assertf F

(Trace) θ ::= ⊥ | ε | A | θ1 ∨ θ2 | θ1 ∧ θ2 | θ1 · θ2 | θ?

(Single Events) A ::= ev(t) | ¬ev(t) | ¬_(t) | _ | pred(B , i)

(Future Cond .) F ::= θ pred(B , i) ::= ΛBi (
∨

(π ∧ θ))

(Pure) π ::= T | F | bop(t1, t2) | π1∧π2 | π1∨π2 | ¬π | ∃x. π | ∀x. π
(Terms) t ::= v | t1+t2 | -t (Values) v ::= x | i | b | () | null | ∗
(Bag) B ::= ∅ | {v} | B1-B2 | B1 ∪B2 | B1 ∩B2

Fig. 8. Syntax of the core language and the specification language
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while loops, etc. Furthermore, we use “ev(A)” for explicitly raising events, and
“assertf F ” for asserting constraints for future behaviors.

Traces are regular expressions, comprising false (⊥); empty traces ε; single-
ton events A; sequential concatenations θ1 · θ2; disjunctions θ1∨ θ2; conjunctions
θ1 ∧ θ2; and finite time (zero or many) repetition of a trace, constructed by a
Kleene star θ?. In this paper, we use LTL operators F(A), G(A) and N (A) as
short hands for regular expressions “(¬A)? · A · _?”, “(A)?” and “_ · A · _?”,
respectively. Singleton events include: parameterized events ev(t); negated pa-
rameterized events ¬ev(t); forbid argument ¬_(t); wildcards _ matching any
event; predicates that capture a bag of disjunctive traces. Future conditions con-
straint temporal behaviors in the future and are essentially trace constructs; we
use “F ” to denote them for clarity and to avoid ambiguity.

We use “_?” to represent the default future condition, which permits any
possible future executions. The Boolean values of T and F are respectively
indicated by true and false. The binary operators bop are from {<,≤,=,≥, >}.
A term can be a simple value v or simple computations of terms, t1+t2 and -t. A
bag ia a set of unique elements, and we use [0..n) as a shorthand for {0..(n-1)}.

3.1 Instrumented Semantics for the Target Language

To facilitate the soundness proof for the forward rules, we present an instru-
mented reduction [s, ρ, F, e]−→[s′, ρ′, F ′, v] for the core language, shown in Fig.
9. Each reduction rule operates on a concrete program state on the left hand

[OP-Assume]

[s, ρ, F ′,assertf F ]−→[s, ρ, F ′ ∧ F, ()]
A ev(t) F �lin A ↪→Pure(s) F

′

[s, ρ, F, ev(t)]−→[s, ρ ++[A], F ′, ()]
[OP-Ev]

[s, ρ, F, v]−→[s, ρ, F, v]
[OP-Val]

[s, ρ, F, local x]−→[s ++[x], ρ, F, ()]
[OP-Local]

[s, ρ, F, e1]−→[s1, ρ1, F1, v1]
[s1, ρ1, F1, e2]−→[s2, ρ2, F2, v2]

[s, ρ, F, e1 ; e2]−→[s2, ρ2, F2, v2]
[OP-Let]

[OP-Assign]
x ∈ dom(s) [s, ρ, F, e]−→[s1, ρ1, F1, v]

[s, ρ, F, x := e]−→[s1[x:=v], ρ1, F1, ()]

[OP-Cond-T]
[s, ρ, F, e1]−→[s′, ρ′, F ′, v]

[s, ρ, F, if true e1 e2]−→[s′, ρ′, F ′, v]

[OP-Cond-F]
[s, ρ, F, e2]−→[s′, ρ′, F ′, v]

[s, ρ, F, if false e1 e2]−→[s′, ρ′, F ′, v]

JπKs true e′ (e ; while π do e) [s, ρ, F, e′]−→[s′, ρ′, F ′, v]

[s, ρ, F,while π do e]−→[s′, ρ′, F ′, v]
[OP-While-T]

[OP-While-F]
JπKs false

[s, ρ, F,while π do e]−→[s, ρ, F, ()]

[OP-Call]
f (y){e} ∈ P [s, ρ, F, e [x/y]]−→[s′, ρ′, F ′, v]

[s, ρ, F, f (x)]−→[s′, ρ′, F ′, v]

Fig. 9. Big-step instrumented semantic model for the core language
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side, where an expression e is associated with a concrete stack s; a sequence of
events triggered in the course of its execution ρ, and a future condition F . Given
Var is a set of variables, and Val denotes all the concrete values, s and ρ are
from the following concrete domains: s , Var→Val and ρ , list A. The big-step
semantics reduce any given program e to a resulting value v, and when the e
terminates, the state is transformed from (s, ρ, F ) to (s′, ρ′, F ′). We use JπKs to
denote that validity of the constraint π with respect to a concrete stack. In partic-
ular, when triggering an event ev(t), [OP-Ev] subtracts the event from the current
future condition. We use Pure(s) to convert a concrete stack into a pure con-
straint which contains all the equalities between variables and values. Intuitively,
F�lin θ ↪→π F

′ subtracts a trace θ from the given future condition F , resulting in
a next state future condition F ′. For instance, F(free(x ))�lin free(x ) ↪→true _?,
and G(!_(x ))�lin free(x ) ↪→true ⊥. Trace subtraction is detailed in Sec. 4.3.

3.2 Semantic Model for Logical Assertions

We define the semantic model for program assertions in Fig. 10. Let s, ρ |= π∧ θ
denote the models relation, i.e., the concrete stack s and a concrete sequence of
events ρ satisfy the logical state π and the temporal specification θ. Here, [] is
an empty sequence and ++ appends two trace sequences. A concrete state s, ρ
models a trace predicate if for every element j in the bag B, there exists an
instantiated disjunctive case that can be modelled by s, ρ.

s, ρ |= π ∧ ε ⇔ ρ [] and JπKs true

s, ρ |= π ∧ (θ1 ∨ θ2) ⇔ s, ρ |= π ∧ θ1 or s, ρ |= π ∧ θ2
s, ρ |= π ∧ (θ1 ∧ θ2) ⇔ s, ρ |= π ∧ θ1 and s, ρ |= π ∧ θ2
s, ρ |= π ∧ (θ1 · θ2) ⇔ exists ρ1 ρ2 such that ρ1++ρ2 ρ and

s, ρ1 |= π ∧ θ1, s, ρ2 |= π ∧ θ2
s, ρ |= π ∧ θ? ⇔ s, ρ |= π ∧ ε or s, ρ |= π ∧ θ · θ?

s, ρ |= π ∧ ev(t) ⇔ exists t′ such that ρ [ev(t′)] and Jπ ∧ (t t′)Ks true

s, ρ |= π ∧ ¬ev(t) ⇔ exists ev ′, t′ such that ρ [ev ′(t′)] and

either ev 6=ev ′ or Jπ ∧ (t t′)Ks false

s, ρ |= π ∧ ¬_(t) ⇔ exists ev , t′ such that ρ [ev(t′)] and Jπ∧(t t′)Ks false

s, ρ |= π ∧_ ⇔ exists ev , t such that ρ [ev(t)] and JπKs true

s, ρ |= ΛBi (
∨

(π ∧ θ)) ⇔ forall j ∈ B such that s, ρ |= (
∨

(π ∧ θ))[j/i]

Fig. 10. Semantic model of trace specifications

4 Forward Reasoning

We formalize a set of syntax-directed forward rules in Fig. 11, in the form of
Hoare-style triples: {π} e {∆}, i.e., a shorthand for E ` {(π ; ε ;_?)} e {∆},
where E is an environment mapping from functions to their specifications, ε
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represents an empty history trace and _? is the default future condition. Under a
partial correctness interpretation, which we adopt in this paper, the triple means
that if π describes the state before executing e, if e terminates, ∆ describes the
resulting post-summary.

Rule [FV-Assume-F] interpolates future conditions into program states, thereby
constraining subsequent execution behaviors. Rule [FV-Ev] generates one event
into the triggered trace, leaving a default future condition, _?. Rule [FV-Value]
updates the result value in the post state, where we use the reserved variable res
to denote the (temporarily) result values, leaving a default future condition. Rule
[FV-Seq] reasons about e1 and e2 in sequence, and implicitly relies on [FV-Disj] to
distribute the disjunctions introduced by e1, and [FV-Struct] to propagate traces
and future conditions structurally. Rule [FV-Local] introduces an existential vari-
able x into the state. Rule [FV-Cond] computes the post-summaries from both
branches by extending the state with b being true and false, respectively; then, it
disjunctively unions the results. Rule [FV-Call] retrieves the verified specification
of the callee function, checks the entailment between the current state and the
callee’s pre-condition, then concludes the instantiated post-summary.

Rule [FV-Assign] derives the post-summary ∆1 for e by introducing a fresh
variable r to represent ∆1’s return values, substituting all occurrences of res
with r, and binding x and r in the final post-summary. In [FV-While], the initial
state (π ; θ ;F ) serves as a loop invariant, and executing the loop body must
re-establish the loop invariant under the same trace and future conditions. We
present a trace invariant synthesis procedure in Sec. 4.1.

{π} assertf F {(π ; ε ; F )} [FV-Assume-F] {π} ev(t) {(π ; ev(t) ;_?)} [FV-Ev]

π′ π ∧ (res v)

{π} v {(π′ ; ε ;_?)} [FV-Value]
{π} e1 {∆1} {∆1} e2 {∆2}

{π} e1 ; e2 {∆2}
[FV-Seq]

[FV-Local] fresh x

{π} local x {(∃x. π ; ε ; F )}
{π ∧ b} e1 {∆1} {π ∧ ¬b} e1 {∆2}

{π} if b e1 e2 {∆1 ∨∆2}
[FV-Cond]

fresh r f (y)[req:π′ ens:∆] ∈ E π≤π′[x/y]

{π} f (x) {∃r.∆[x/y, r/res]} [FV-Call]

[FV-Assign]
fresh r {π} e {∆1}

{π} x := e {∆1[r/res] ∧ (x r)}

[FV-While]
{(π ∧ πg ; θ ; F )} e {(π ; θ ; F )}

{(π ; θ ; F )} while πg do e {(π ∧ ¬πg ; θ ; F )}

[FV-Disj]
∀(π ; θ ; F ) ∈ ∆. {(π ; θ ; F )} e {∆i}

{∆} e {
∨
∆i}

[FV-Struct] {π} e {∆}
∀(π′ ; θ1 ; F1) ∈ ∆. F � θ1 ↪→π′ F ′

{(π ; θ ; F )} e {
∨

(π′ ; (θ · θ1) ; (F ′ ∧ F1))}

{π3} e {(π4 ; θ′ ; F ′)} π1≤π3 π4≤π2 θ′vπ4 θ F vπ4 F
′

{π1} e {(π2 ; θ ; F )} [FV-Conseq]

Fig. 11. Forward verification and inference rules
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Furthermore, [FV-Disj] distributes the disjunctive tuples from the left-hand
side and unions their independent reasoning results. Rule [FV-Struct] is a struc-
tural rule designed to handle arbitrary tuples from the left-hand side. Given any
history traces θ and context future conditions F , [FV-Struct] performs two key
operations: it concatenates the extended traces to the history trace (θ · θ1); and
propagates the subtracted F , represented as F � θ1 ↪→π F

′, to be part of the
post-summary. Intuitively, this rule concludes a conjunctive future condition,
i.e., F ′ ∧ F1, which encompasses both the future condition F1 obtained by exe-
cuting e and the future condition propagated from the context F1. Lastly, Rule
[FV-Conseq] soundly weakens the post-summaries by weakening postconditions
(the covariant) and strengthening pre/future-conditions (the contravariants).

Entailment Checking & Trace Subtraction. Pure constraints entailment
(π≤π′) are discharged by the Z3 [6] solver. Trace inclusions (θ1vπ θ2) are dis-
charged by a term rewriting system (TRS), which is extended from a known
solution [4] for solving inequalities between regular expressions, detailed in Sec.
4.2. Trace subtraction from future conditions (F �θ ↪→π F

′) propagates the con-
text future condition concerning specific execution traces, detailed in Sec. 4.3.
Overall, our main technical contributions are: extending the TRS to accommo-
date our new event types, and developing novel trace subtraction rules.

Specification Inference for Function Definition. Given a set of primitive
specifications, our goal is to develop a verification system that is as automated
as possible, where the specification for each function definition is inferred com-
positionally. The top-level inference process is illustrated in [FV-Func]. The envi-
ronment E includes both primitive specifications and the specifications inferred
so far. For each function definition f (x) {e} in the given program, we derive the
specification for e using the forward rules in Fig. 11 and then reason the rest of
the program with the extended environment E ′.

E ` {π′} e {∆} ∀(π ; θ ;F )∈∆. δ(F∃) true
E ′ E ++ f (x) [req:π′ ens:∆] {e} E ′ ` P

E ` f (x) {e} ; P
[FV-Func]

For each tuple in e’s post-summary ∆, we check whether the empty trace sat-
isfy the future conditions involving existential variables, i.e., F∃, as the lifetime
of existential variables ends when the function concludes. The F∃ is computed
from F by replacing all events related to universally quantified variables – in-
cluding the formal arguments x and the return value res – into wildcards “_”,
and the resulting future condition thus retains only the constraints on existential
variables. For example, in Fig. 5, the memory leak error upon the usage of arr
is detected in main instead of mallocN, as arr is universally quantified in mal-
locN, but existential quantified in main. The Nullable function (cf. Definition 1)
returns a Boolean value indicating if θ permits the empty trace.
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Definition 1 (Nullable). Given any sequence θ, we recursively define δ(θ):

δ(θ1 · θ2) δ(θ1)∧ δ(θ2) δ(θ1 ∨ θ2) δ(θ1)∨ δ(θ2) δ(θ1 ∧ θ2) δ(θ1)∧ δ(θ2)

δ(ΛBi (
∨

(π ∧ θ))) ∃θ. (δ(θ) true) δ(ε) δ(θ?) true δ(⊥) δ(A) false

4.1 Trace Invariant Synthesis

A key challenge in automating the verification lies in inferring trace invariants
– specifically, given a loop expression “while πg do e”, determining the initial
state (π ; θ ;F ), deployed in [FV-While]. The trace invariant synthesis process
is outlined in Algorithm 1. It takes a loop statement as input and either out-
puts a valid invariant or triggers a verification failure – indicating that the loop
invariants must be provided manually.

Algorithm 1 Loop Invariant Synthesis
Require: A loop: while πg do e
Ensure: A Loop Invariants or Failure
1: {π′} e {

∨
(π ; θ ; F )}

2: fresh i
3: for all B ∈ BB(πg) do
4: θ ← ΛBi (

∨
(π ∧ θ))

5: F ← ΛBi (
∨

(π ∧ F ))
6: if {(π′ ∧πg ; θ ; F )} e {(π′ ; θ ; F )}
7: then return (π′ ; θ ; F )
8: end for
9: return Unknown Loop Invariant

At lines 1-2, it derives the specifi-
cation for e and obtains a fresh iter-
ator i. Then deploys the bag bounds
generation function (Definition 2) to
produce a set of candidate bags. For
each candidate bag B, lines 4-5 con-
struct the trace and future condition
predicates respectively. If there exists
an invariant that can be re-established
after one iteration of the loop body
(line 6), it is deemed valid. Otherwise,
the synthesis fails and the verification
could not proceed due to the absence of trace invariants.

Definition 2 (Bag Bounds Generation). For any loop guard π, we propagate
a set of candidate bag bounds using BB(π), for constructing the trace predicates:

BB(t1<t2) {[0..t1), . . .} BB(π1∧π2) BB(π1) ∪ BB(π2)

BB(t1≤t2) BB(t1<(t2+1)) BB(t1>t2) BB(t2<t1) BB(t1≥t2) BB(t2≤t1)

In Definition 2, the base case is generating the candidate bags for t1<t2 while
the remaining cases are derived by reduction to the base case. For example, Fig.
12 demonstrates the verification process for the loop in mallocN (Fig. 5). At

3. while (i < n){{
(∃i. true ; predt([0 ..i), i) ; predf ([0 ..i), i))

}
4. arr[i] = malloc(4);{

(∃i. true ; predt([0 ..i+1 ), i) ; predf ([0 ..i+1 ), i)
:::::::::::::

)
}

5. i = i+1;{
(∃i. true ; predt([0 ..i+1 ), i+1 ) ; predf ([0 ..i+1 ), i+1 )

::::::::::::::::
)
}

6. }{
(∃i. i n ; predt([0 ..i)) ; predf ([0 ..i)))

}
 

{
(∃i. true ; predt([0 ..n)) ; predf ([0 ..n)))

}
Fig. 12. Outlining the reasoning for the loop in Fig. 5



Specifying and Verifying Future Conditions 13

line 3, Algorithm 1 generates an invariant where i serves as the iterator and
“[0..i)” denotes the bag representation. The verification then establishes that
this invariant holds through each loop iteration – specifically, the program states
after lines 3 and 5 are isomorphic with respect to the iterator’s value. The final
program state is derived by conjoining with the negated loop guard, i.e., (i n).

This process employs heuristics and is inherently incomplete: it may fail to
capture the complete bag range or the precise iterator (which can be improved
by incorporating the loop iterator’s initial value). Nevertheless, the verification
remains sound, as [FV-While] only succeeds when valid invariants are provided.

4.2 Trace Inclusion

As shown in Fig. 13, we use (H ` θ1vπ θ2) to denote the inclusion between
two traces, where H contains a set of proof hypotheses, and when omitted it is
initialized with {}. [Inc-Disprove] disproves the inclusions when the antecedent is
nullable (containing the empty trace ε), while the consequent is not. [Inc-Reoccur]
proves an inclusion by leveraging existing hypotheses in the proof context H that
soundly justify the current goal. [Inc-Unfold] serves as the inductive step, unfold-
ing inclusions – proof of the original inclusion succeeds if all derivative inclusions
succeed. Termination of the rewriting is guaranteed because the set of deriva-
tives to be considered is finite, and possible cycles are detected via memorization
([Inc-Reoccur]). We define the soundness of these rules in Theorem 1.

[Inc-Disprove]
δ(θ1) ∧ ¬δ(θ2)

H ` θ1 6vπ θ2

[Inc-Reoccur]
(θ1vπ θ2) ∈ H
H ` θ1vπ θ2

[Inc-Unfold] ∀A∈ fst(θ1).
(θ1vπ θ2) ++H ` DπA(θ1)vπ DπA(θ2)

H ` θ1vπ θ2

Fig. 13. Trace inclusion checking rules

To facilitate these inclusion rules, we provide the definitions of the deployed
auxiliary functions: Nullable (δ) at Definition 1, First (fst) at Definition 3, and
Derivative (DπA(θ)) at Definition 4. Informally, the First function fst(θ) computes
a set of possible initial events from θ. The Derivative function DπA(θ) eliminates
an event A from the head of θ and returns what remains.

Definition 3 (First). Let fst(θ) be the set of initial events derivable from θ.

fst(⊥) fst(ε) {} fst(A) {A} fst(θ1 ∨ θ2) fst(θ1) ∪ fst(θ2) fst(θ?) fst(θ)

fst(θ1 ∧ θ2) fst(θ1) ∩ fst(θ2) fst(θ1 · θ2)

{
fst(θ1) ∪ fst(θ2) if δ(θ1) true
fst(θ1) if δ(θ1) false

Definition 4 (Derivative). The partial derivative DπA(θ) eliminates an event
A from the head of a trace θ, defined as follows:



14 Yahui Song Darius Foo Wei-Ngan Chin

DπA(⊥) DπA(ε) ⊥ DπA(θ1∧ θ2) DπA(θ1)∧DπA(θ2) DπA(θ1∨ θ2) DπA(θ1)∨DπA(θ2)

DπA(θ?) DπA(θ) · θ? DπA(θ1 · θ2)
{

(DπA(θ1) · θ2) ∨ DπA(θ2) if δ(θ1) true

DπA(θ1) · θ2 if δ(θ1) false

Definition 5 serves as the base case for Definition 4, computing the derivatives
between two events. While these auxiliary functions were originally designed to
solve inequalities between regular expressions, they only supported cases where
events were simple alphabets [4], with derivatives computed via lexical com-
parison. In our work, events could be trace predicates or parameterized with
program variables. To handle such cases, we thus extend the Derivative function
with pure constraints. In Definition 5, the definition of event derivatives adheres
strictly to the semantic model (cf. Fig. 10). Notice that A takes one of two forms:
a positive event “ev(t)”, or a trace predicate, as they are the only cases that are
derivable from the program executions. When both A and B are trace predicates,
they must first be normalized into the same bag “B” and then processed using
the trace subtraction operator (detailed in Sec. 4.3).

Definition 5 (Derivative for Events). Given any two events A, B, the deriva-
tive of B with respect to A, i.e., DπA(B) is defined as follows: (⊥ for the unmen-
tioned scenarios)

Dπev(t)(ev(t ′))

{
ε if π⇒ (t t′)
⊥ otherwise

Dπev(t)(¬_(t ′))

{
ε if π 6⇒ (t=t′)
⊥ otherwise

Dπev(t)(¬ev ′(t ′))

{
⊥ if ev ev ′ and π≤ (t=t′)
ε otherwise

Dπev(t)(_) ε Dπ
′

ev(t)(Λ
B
i (. . . )) ΛBi (. . . )

Dπ
′

ΛB
i (

∨
(π2∧θ2))(Λ

B
i (
∨

(π1 ∧ θ1))) ΛBi (
∨

(π1 ∧ π2 ∧ θ′)) where θ1 � θ2 ↪→π′ θ′

Theorem 1 (Soundness of Trace Inclusion). For all π, θ1, θ2, s and ρ,
given θ1vπ θ2, it means that if s, ρ |= π ∧ θ1, then s, ρ |= π ∧ θ2.

Proof. By induction on the derivation of θ1vπ θ2.

4.3 Subtracting Traces from Future Conditions

As shown in Fig. 14, we use F � θ ↪→π F
′ to denote the subtraction of the trace

θ from the given future condition F , resulting in a “left-over” future condition
F ′, which we call a residue. Rule [TS-Base] captures the base case where the
trace to subtract is an empty trace, leaving the future condition unchanged.
Rule [TS-Bot] handles the case where the subtracted trace is ⊥, leading to false
future conditions. Rule [TS-Ind] disjunctively unions all the subtraction results
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[TS-Base]
F � ε ↪→π θ

[TS-Bot]
F �⊥ ↪→π ⊥

∀A∈ fst(θ2). DπA(θ1)�DπA(θ2) ↪→π θi

θ1 � θ2 ↪→π

∨
θi

[TS-Ind]

F3 � θ ↪→π F4

F3vπ F1 F2vπ F4

F1 � θ ↪→π F2
[TS-Conseq]

F1 � θ ↪→π F2 θ′vπ θ
F1 � θ′ ↪→π F2

[TS-Trans]

Fig. 14. Trace subtraction rules

from the derivatives. Rule [TS-Conseq] allows for strengthening the subtraction
residues and weakening the input future conditions. Rule [TS-Trans] captures
the case where we can strengthen the subtracted trace. We define and prove
the soundness of these rules in Theorem 2, which indicates that in a sound
subtraction, the residue can only be strengthened.

Theorem 2 (Soundness of Trace Subtraction). For all π, F , F ′, θ, s and
ρ, given F � θ ↪→π F

′ it means that if s, ρ |= π ∧ (θ · F ′) then s, ρ |= π ∧ F .
Proof. By induction on the derivation of F � θ ↪→π F

′.

4.4 Soundness of Forward Reasoning

We here define the soundness of the forward rules and highlight the key lemmas.
Theorem 3 presents the soundness for the generalized forward rules, where rules
like {π} e {∆} are generalized into the form of {(π ; ε ;_?)} e {∆}. The soundness
states that for any given expression e, starting from a concrete model which
satisfies the pre-state, when e evaluates to a value v, the resulting concrete
model satisfies one of the concluded post-summaries, which guarantees that all
the forward rules soundly over-approximating e’s behavior and strengthening
the final future conditions.

Theorem 3 (Soundness of the Generalised Forward Rules). For all e, π,
θ1, F , F ′, s1, s2, ρ1, ρ2, v, given {(π ; θ1 ; F )} e {∆}, [s1, ρ1, F, e]−→[s2, ρ2, F

′, v],
and s1, ρ1 |= π ∧ θ1, there exists (π′ ; θ2 ; F ′′)∈∆ such that (s2 ++ res v), ρ2 |=
π′ ∧ θ2 and F ′′vπ′ F ′.

Proof. By induction on the structure of e, and applying Lemma 1 and Lemma 2
when proving the sequencing rule [FV-Seq] and the structural rule [FV-Struct].

Lemma 1 (Strengthening the Future Conditions from the Instrumented
Semantics). For all, s1, s2, ρ1, ρ2, F1, F2, F3, v,
given [s1, ρ1, F1, e]−→[s2, ρ2, F2, v] and F3vPure(s1) F1,
there exists F4, such that, [s1, ρ1, F3, e]−→[s2, ρ2, F4, v] and F4vPure(s2) F2.

Proof. By induction on [s1, ρ1, F1, e]−→[s2, ρ2, F2, v].

Lemma 2 (Approximating the Concrete Trace Subtraction). For all
F1, θ, F2, s, ρ, given F1 � θ ↪→π F2 and s, ρ |= π ∧ θ, then exists F3 such that
F1 �lin ρ ↪→Pure(s) F3 and F2vPure(s) F3.
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Proof. By induction on F1 � θ ↪→π F2.

Lemma 1 states that in the instrumented semantics, starting with a stronger
future condition leads to stronger resulting future conditions. In Lemma 2, we
use �lin to denote subtracting a linear sequence of events ρ from a given future
condition without any approximation. It states that the trace subtraction �
introduces approximation and results in stronger residues.

Table 1. Selected propositions for reasoning future conditions

θ1 ∧ θ2 ↔ θ2 ∧ θ1 (1) θ1 ∧ (θ2 ∧ θ3)↔ (θ1 ∧ θ2) ∧ θ3 (2)
⊥ · θ θ · ⊥→⊥ (3) (θ1 · θ2 6= ⊥)→ (θ1 6= ⊥) ∧ (θ2 6= ⊥) (4)

_?vπ θ→ (θ _?) (5) (θ1 ∧ θ2 6= ⊥)→ (θ1 6= ⊥) ∧ (θ2 6= ⊥) (6)
(_? �A ↪→π θ)→ (θ _?) (7) θ1vπ θ2→ (θ2vπ θ3→ θ1vπ θ3) (8)

(_? �lin A ↪→π θ)→ (θ _?) (9) ΛB1∪B2
i (. . . ) ↔ ΛB1

i (. . . ) ∧ ΛB2
i (. . . ) (10)

ΛBi (
∨

(π ∧_?)) → _? (11) Λ
{v}
i (

∨
(π ∧ θ)) → (

∨
(π ∧ θ))[v/i] (12)

Additionally, Table 1 presents a set of propositions essential for improving
completeness. For example, the trace subtraction for the predicate in Fig. 7 is
performed after applying propositions (10) and (12), detailed in Fig. 15.

predf ([0 ..5 ), arr)� free(arr [0 ]) (Table1 -10 )

↪→π (predf (0 , arr) ∧ predf ([1 ..5 ), arr))� free(arr [0 ]) (Table1 -11 )

↪→π (F(free(arr [0 ]))� free(arr [0 ])) ∧ predf ([1 ..5 ), arr) (Definition 4 )

↪→π _? ∧ predf ([1 ..5 ), arr)

Fig. 15. Trace subtraction example for predicates

5 Evaluation and Case Studies

We formalize the soundness proofs presented in this work using Coq, publicly
available from our artifact [2]. The Coq development comprises approximately
2,300 lines of code (LoC). We also prototype our system into an automated
verification tool, implemented in 3,600 LoC of OCaml, demonstrating its appli-
cability in verifying real-world programs. Experiments were done on a MacBook
with a 2.6 GHz 6-Core Intel i7 processor. The source code and the evaluation
benchmark are openly accessible [2].

Experiment Setup. Table 2 categorizes APIs by functionality and specifies
the future conditions required for their safe usage. The table organizes these
APIs into six categories (1-6), covering operations such as file I/O, thread syn-
chronization, memory management, and more. These conditions were manually
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Table 2. Selected APIs with their specifications in different usage contexts

Category Example APIs Future Conditions

1. File Ops
fopen, open Finally to close the file descriptor
fclose, close Globally do not access the file descriptor

Read-only files cannot be written to

2. Threads pthread_create Finally to pthread_join or detach the thread
pthread_mutex_lock Finally to pthread_mutex_unlock

3. Memory

free Globally do not access the pointer
malloc Finally free the new pointer

realloc Globally the old pointer is not accessed
& finally free the new pointer

4. Sockets socket Finally to close the socket
5. Database sqlite3_open Finally to sqlite3_close the connection
6. URV/NPD fgets, gethostbyaddr Check the return value immediately after calls

derived from official documentation and common usage patterns. The complete
set of formalized specifications are provided in Appendix ??. In particular, we
treat the unchecked return value (URV) and null-pointer dereference (NPD) vul-
nerabilities to be a critical use case for future conditions. URVs and NPDs occur
when a program fails to validate the return value of a function, potentially lead-
ing to crashes or undefined behavior. To mitigate such risks, developers must
ensure that all function return values are checked and handled appropriately.

Experimental Results. Our evaluation uses real-world C programs sourced
from: (i) the CWE database (containing diverse vulnerability types); (ii) API
usage tutorials (demonstrating correct practices); and (iii) GitHub repositories
(featuring real-world usage of critical APIs). The benchmark contains 51 man-
ually verified API misuse violations, serving as ground truth for evaluation. Re-
sults are summarized in Table 3, with the following metrics:PrimS is the number
of primitive specifications (manually provided, avg. 4.5 LoC/spec), InferredS is
the number of inferred specifications (equals to the number of analyzed function
declarations), InferredInv is the number of inferred trace invariants,Report/-
Exp. stands for reported violations/ground truth violations, and Time records
the total verification time in seconds. Our evaluation spans 1721 LoC across six

Table 3. Experimental Results

Category LoC PrimS InferredS InferredInv Report/Exp. Time(s)
1 675 8 30 7 14/12 13.66
2 330 4 25 1 4/4 0.49
3 409 6 30 12 26/24 6.60
4 103 2 6 1 3/3 0.50
5 109 4 6 0 4/4 0.50
6 95 10 4 0 4/4 0.03

Total 1721 34 101 21 55/51 21.78
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distinct categories, with verification and inference applied to 101 functions. The
tool reports 55 violations, including all 51 manually verified true positives and
4 false positives (incorrectly flagged safe code). Total verification time is 21.78
seconds, with processing time scaling proportionally to the program length and
the number of primitive specifications.

1 void false_positive1 () {
2 int** ptr1= malloc (4);
3 int* ptr2= malloc (4);
4 *ptr1 = ptr2;
5 free(*ptr1);
6 free(ptr1); }
7 False positive: Memory Leak!

Fig. 16. False positive example for (ii)

1 void false_positive2
2 (const char* filename) {
3 int r = unlink(filename);
4 if (r == 0) {
5 int fd=fopen(filename ,"r");
6 assert(fd == NULL);}}
7 False positive: Unclosed File!

Fig. 17. False positive example for (iii)

Expressiveness Limitations. The observed false positives arise from three
limitations: (i) trace invariant inference fails under non-structured control flow
(e.g., goto statements, infinite loops); (ii) incomplete modeling for memory us-
age; and (iii) restriction to first-order constraints. We next illustrate (ii) and
(iii) with concrete examples. As shown in Fig. 16, the pointer ptr1 points to the
address of ptr2 (assigned at line 4). In this code, freeing *ptr1 (the content of
ptr1) and then ptr1 itself is safe and correctly avoids memory leaks. However,
the deployed pure arithmetic logic fails to recognize the points-to relationship
established at line 4. As a result, it incorrectly reports a memory leak, suggesting
that ptr2 is never freed – even though it is freed via *ptr1. This can be miti-
gated by extending the basic logic with points-to relations. As demonstrated in
Fig. 17, the unlink function removes a file from the filesystem when it returns 0.
Consequently, the subsequent call to fopen at line 5 will always fail (returning
NULL), making the code correct – the assertion at line 6 will always succeeds.
However, because our tool does not model unlink’s side effects – specifically,
that future fopen calls on the same filename must fail – it incorrectly reports
a file descriptor leak. Tracking external system for file states would resolve this
limitation. Despite these limitations, our framework remains the first

::::::
sound ver-

ification system capable of detecting a broad range of violations via temporal
logic encoding – providing a foundation for these aforementioned extensions.

Case Study: Inter-procedural Analysis & Conditional Violation. Fig.
18 presents a non-trivial double-free example, drawn from prior works [9, 15].
The foo function takes a pointer p and returns either a newly allocated pointer
or the existing pointer p�f , based on the value of p�flag . In main function, a
local st structure is created, memory is allocated for p.f , and foo is called. The
potential double-free occurs because: if p.flag is false, q and p.f point to the
same memory (line 4). Both q and p.f are then freed (lines 10, 11), causing a
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1. int *foo(struct st *p){
2. int *q;{
∃q. true ; ε ;_?

}
3. if (p->flag) q = malloc(1); [FV-Call][FV-Assign][FV-Cond][FV-Struct]{
∃q, l . (p�flag) ∧ q l ; malloc(l) ;F (free(l))

::::::::

}
4. else q = p->f; [FV-Assign][FV-Cond][FV-Struct]{
∃q.¬(p�flag) ∧ q (p�f) ; ε ;_?

}
5. return q;} [FV-Value][FV-Cond][FV-Struct][FV-Seq]{
∃l . (p�flag) ∧ res l ; malloc(l) ;F (free(l)) ∨ ¬(p�flag) ∧ res (p�f) ; ε ;_?

}
6. int main(){
7. struct st p; int *q;{
∃p, q. true ; ε ;_?

}
8. p.f = malloc(1); [FV-Call][FV-Assign][FV-Struct]{
∃p, q, l . p.f l ; malloc(l) ;F (free(l))

::::::::

}
9. q = foo(&p); [FV-Call][FV-Assign][FV-Struct][FV-Seq]{∃p, q, l , l1. (p.flag) ∧ p.f l ∧ q l1 ; malloc(l) ·malloc(l1 ) ;F (free(l)) ∧ F (free(l1 ))

:::::::::::::::::::

∨ ∃p, q, l .¬(p.flag) ∧ q p.f ∧ p.f l ; malloc(l) ;F (free(l))

}
10. free(q); [FV-Call][FV-Struct][FV-Seq]{∃p, q, l , l1. (p.flag)∧p.f l∧q l1 ; malloc(l)·malloc(l1 )·free(l1 ) ;F (free(l)) ∧ G (!_(l1 ))

::::::::::::::::::

∨ ∃p, q, l .¬(p.flag) ∧ q p.f ∧ p.f l ; malloc(l) · free(l) ; G (!_(l))
:::::::

}
11. free(p.f); } [FV-Call][FV-Struct][FV-Seq]{∃p, q, l , l1. (p.flag)∧p.f l ; malloc(l)·malloc(l1 )·free(l1 )·free(l) ; G (!_(l)) ∧ G (!_(l1 ))

::::::::::::::::

∨ ∃p, q, l .¬(p.flag) ∧ q p.f ∧ p.f l ; malloc(l) · free(l) · free(l) ;⊥ ⇐= 7

}

Fig. 18. Inter-procedural analysis for detecting a conditional double free violation

double-free when p.flag was false (line 11). This example is non-trivial because
it requires a precise inter-procedural analysis and path sensitivity.

The verification proceeds as follows: Lines 2 and 7 initialize the program
states using existentially quantified variables. Lines 3 and 4 reason about the two
branches of the conditional and creates the existential variable l for the newly
allocated heap address. By integrating the results, line 5 leads to a disjunctive
post-summary which says that when p�flag is true, the program returns a newly
allocated heap location l , and there is a future condition to finally free l ; when
p�flag is false, it returns p�f and have no meaningful future conditions.

When calling the function foo, line 9 retrieves its specification (obtained after
line 5), renames all its existential variables using fresh variables, and composes
the instantiated specification into the current summaries. In line 10, under the
condition ¬(p.flag), freeing q updates the propagated future conditions from
F(free(l)) to G(!_(l)). Subsequently, in line 11, when freeing p.f , it detects the
double free under the pure constraint π = (∃p, q, l .¬(p.flag) ∧ q p.f ∧ p.f l) –
the following trace subtraction step results in false: G(!_(l))� free(p.f ) ↪→π ⊥.
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6 Related Work

Statically Checked Contracts. Typestate systems [16], recently revisited in
various forms [7, 13, 18, 3], may also be used to a similar outcome as future con-
ditions. These systems associate an object’s state with its type, enforcing valid
operation sequences based on that state, which is useful in object-oriented pro-
gramming. Both typestates and future conditions model the correct execution
order of operations on entities. However, typestates operate on objects, while fu-
ture conditions operate on program variables. Additionally, implementing type-
state systems often requires extensive boilerplate code. For instance, developers
must meticulously define state transitions in a global view and manage associated
types, increasing complexity in code maintenance and readability. In contrast,
future conditions offer a more concise and modular way to specify and verify
temporal properties without requiring explicit global state transitions. Their
modularity stems from the fact that each future condition encapsulates tempo-
ral constraints specific to its associated function, independent of any global state.

Rust’s type system [1] primarily enforces memory safety (ownership, bor-
rowing, lifetimes), while the typestate pattern extends this by encoding state
transitions into the type system, ensuring operations are only valid in certain
states (e.g., a File<Open> can be read, but a File<Closed> cannot). However,
typestates do not explicitly handle temporal properties (e.g., “eventually, this
operation must happen”). Such properties must instead be verified separately
against the global state transitions. Our approach unifies and extends both type-
state systems and Rust’s type system by: encoding memory safety using LTL
formulas and enabling temporal reasoning (e.g., “this resource remains valid un-
til condition π holds”) alongside memory safety. Lastly, effect systems are also
closely related, as they constrain which effects can be performed. While ordi-
nary effect systems do not consider the order of effects, sequential effect systems
[17, 8, 14] do. However, they follow the form of pre-/post-conditions, which is
inadequate for describing future conditions in a modular style.

Dynamically Checked Contracts. Trace contracts [12] are for specifying and
verifying properties of sequences of function calls and returns in the Racket pro-
gramming language. They allow developers to define predicates over the sequence
of values that flow through function calls, enabling the detection of violations
of expected behaviors across multiple function invocations. By monitoring pro-
grams at run time, trace contracts are able to take advantage of the precision
that run-time checking offers, which possibly goes beyond statically decidable
properties. Similar to typestate systems, trace contracts describes a global view
of the protocols, while future conditions provide a more modular and local view
of each effectful operation. Moreover, apart from the run-time overhead and
increased resource consumption, trace contracts has limited expressiveness for
imperative assignments and effectful loops, which are now supported in our ver-
ification framework.

Bug Finding at Scale. While Pulse [10] (based entirely on separation logic)
and ProveNFix [15] (grounded in temporal logic) both use specification inference
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to detect memory and resource violations, our work generalizes both solution and
yields a more comprehensive solution. Unlike Pulse, we eliminate the need for
implicit side-checks, and compared to ProveNFix, we avoid repeated analysis
while maintaining full temporal violation detection capabilities.

7 Conclusion

Future conditions extend traditional pre- and post-conditions by specifying tem-
poral behaviors and states that emerge after a function call completes. This work
tackles the central question: “How can we efficiently and soundly reason about
future conditions using temporal logic? ” We propose a compositional verifica-
tion framework that propagates future conditions independently of contextual
code. Our solution introduces novel trace inclusion and trace subtraction mech-
anisms to facilitate a more efficient propagation of future conditions, where they
are processed once per method declaration. Additionally, we present a approach
for verifying effectful loops using trace and future condition predicates. The
soundness of our system is formally proven, and its practicality is demonstrated
through experimental results and non-trivial case studies.
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