
Yahui Song, Darius Foo, Wei-Ngan Chin

Static Analysis Symposium (SAS) @ SPLASH 2025, Singapore

Specifying and Verifying Future Conditions

1

The existing solution

2

Three main limitations：

❑ Inefficient (O(n2)) entailment checking

❑ Handle loops via unrolling

❑ Bug-finding (no incorrectly flagged safe code) over soundness (no missed violations)

[FV-Call]

Inefficient (O(n2)) entailment checking

3

Use-after-free!

A use-after-free bug recorded from CWE-416

Inefficient (O(n2)) entailment checking

4

Use-after-free!

[FV-Call]

5

malloc(buf2).free(buf2).malloc(buf3).strncpy(buf2).free(buf1).free(buf3) ⊑ F(free(buf1))

free(buf2).malloc(buf3).strncpy(buf2).free(buf1).free(buf3) ⊑ F(free(buf2))

malloc(buf3).strncpy(buf2).free(buf1).free(buf3) ⊑ G (! _ (buf2))

strncpy(buf2).free(buf1).free(buf3) ⊑ F(free(buf3))

free(buf3) ⊑ G (!_(buf1))

empty ⊑ G (!_(buf3))

Use-after-free!

[FV-Call]

Inefficient (O(n2)) entailment checking

7

A new solution for reasoning FCs

8

A new solution for reasoning FCs

❖ Linear trace processing

❖ Embed FCs into program states

❖ Trace conjunction + subtraction

The existing solution

9

Three main limitations：

✓ Inefficient entailment checking

❑ Handle loops via unrolling

❑ Bug-finding (no incorrectly flagged safe code) over soundness (no missed violations)

[FV-Call]

Embed FCs into the states + Trace subtraction

Predicates for Bags of Traces and Future Conditions

10

A false negative example from ProveNFix

Predicates for Bags of Traces and Future Conditions

11

When reasoning about main():

When reasoning about mallocN():

Predicates for Bags of Traces and Future Conditions

12

The existing solution

13

Three main limitations：

✓ Inefficient entailment checking

✓ Handle loops via unrolling

❑ Bug-finding (no incorrectly flagged safe code) over soundness (no missed violations)

[FV-Call]

Embed FCs into the states + Trace subtraction

Predicates for bags of traces and FCs

Soundness Formalization

14

• An instrumented semantics for the target language:

• Semantic model of trace specifications:

• A set of forward verification rules:

stack execution trace

It only sound to strengthen the future conditions, so that we do not miss any violations.

The existing solution

15

Three main limitations：

✓ Inefficient entailment checking

✓ Handle loops via unrolling

✓ Bug-finding (no incorrectly flagged safe code) over soundness (no missed violations)

[FV-Call]

Embed FCs into the states + Trace subtraction

Predicates for bags of traces and FCs

Coq formalization

Experimental Results

16

Write these future conditions manually

Experimental Results

17

False positive due to the limited expressiveness:

✓ A novel future-condition

✓ Compositional temporal analysis

✓ Light-weight specification inference

✓ Fast and most-automated

✓ Proof guided repair

✓ Large-scale usability

18

✓ Handle loops via recursive predicates

✓ Efficient (linear) entailment checking

✓ Sound weakening when path explosion

✓ No false negatives

❑ No machine checkable certification

❑ Limited expressiveness

Future Conditions

Bug Finding and Repair Verification

Thanks for

listening!

	Default Section
	Slide 1
	Slide 2: The existing solution
	Slide 3: Inefficient (O(n2)) entailment checking
	Slide 4: Inefficient (O(n2)) entailment checking
	Slide 5: Inefficient (O(n2)) entailment checking
	Slide 7: A new solution for reasoning FCs
	Slide 8: A new solution for reasoning FCs
	Slide 9: The existing solution
	Slide 10: Predicates for Bags of Traces and Future Conditions
	Slide 11: Predicates for Bags of Traces and Future Conditions
	Slide 12: Predicates for Bags of Traces and Future Conditions
	Slide 13: The existing solution
	Slide 14: Soundness Formalization
	Slide 15: The existing solution
	Slide 16: Experimental Results
	Slide 17: Experimental Results
	Slide 18

