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Specifying and Verifying Future Conditions
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The existing solution
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Three main limitations：

❑ Inefficient (O(n2)) entailment checking

❑ Handle loops via unrolling

❑ Bug-finding (no incorrectly flagged safe code) over soundness (no missed violations)

[FV-Call]



Inefficient (O(n2)) entailment checking
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Use-after-free!

A use-after-free bug recorded from CWE-416



Inefficient (O(n2)) entailment checking
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Use-after-free!

[FV-Call]
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malloc(buf2).free(buf2).malloc(buf3).strncpy(buf2).free(buf1).free(buf3) ⊑ F(free(buf1))

free(buf2).malloc(buf3).strncpy(buf2).free(buf1).free(buf3) ⊑ F(free(buf2))

malloc(buf3).strncpy(buf2).free(buf1).free(buf3) ⊑ G (! _ (buf2))

strncpy(buf2).free(buf1).free(buf3) ⊑ F(free(buf3))

free(buf3) ⊑ G (!_(buf1))

empty ⊑ G (!_(buf3))

Use-after-free!

[FV-Call]

Inefficient (O(n2)) entailment checking
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A new solution for reasoning FCs
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A new solution for reasoning FCs

❖ Linear trace processing 

❖ Embed FCs into program states

❖ Trace conjunction + subtraction 



The existing solution
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Three main limitations：

✓ Inefficient entailment checking

❑ Handle loops via unrolling

❑ Bug-finding (no incorrectly flagged safe code) over soundness (no missed violations)

[FV-Call]

Embed FCs into the states + Trace subtraction



Predicates for Bags of Traces and Future Conditions
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A false negative example from ProveNFix



Predicates for Bags of Traces and Future Conditions
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When reasoning about main(): 



When reasoning about mallocN(): 

Predicates for Bags of Traces and Future Conditions
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The existing solution
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Three main limitations：

✓ Inefficient entailment checking

✓ Handle loops via unrolling

❑ Bug-finding (no incorrectly flagged safe code) over soundness (no missed violations)

[FV-Call]

Embed FCs into the states + Trace subtraction

Predicates for bags of traces and FCs



Soundness Formalization 
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• An instrumented semantics for the target language:

•  Semantic model of trace specifications:

• A set of forward verification rules: 

stack execution trace

It only sound to strengthen the future conditions, so that we do not miss any violations.



The existing solution
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Three main limitations：

✓ Inefficient entailment checking

✓ Handle loops via unrolling

✓ Bug-finding (no incorrectly flagged safe code) over soundness (no missed violations)

[FV-Call]

Embed FCs into the states + Trace subtraction

Predicates for bags of traces and FCs

Coq formalization 



Experimental Results

16

Write these future conditions manually 



Experimental Results

17

False positive due to the limited expressiveness:



✓ A novel future-condition

✓ Compositional temporal analysis

✓ Light-weight specification inference

✓ Fast and most-automated

✓ Proof guided repair

✓ Large-scale usability
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✓ Handle loops via recursive predicates 

✓ Efficient (linear) entailment checking

✓ Sound weakening when path explosion

✓ No false negatives

❑ No machine checkable certification

❑ Limited expressiveness

Future Conditions

Bug Finding and Repair Verification 

Thanks for

listening!
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