
Automated Verification for Real-Time Systems using
Implicit Clocks and an Extended Antimirov

Algorithm

Yahui Song
National University of Singapore

Singapore, Singapore

yahuis@comp.nus.edu.sg

Wei-Ngan Chin
National University of Singapore

Singapore, Singapore

chinwn@comp.nus.edu.sg

Abstract

The correctness of real-time systems depends both on the

correct functionalities and the realtime constraints. To go

beyond the existing Timed Automata based techniques, we

propose a novel solution that integrates a modular Hoare-

style forward verifier with a new term rewriting system

(TRS) on Timed Effects (TimEffs).

The main purposes are to increase the expressiveness, dy-

namically create clocks, and efficiently solve constraints on

the clocks. We formally define a core language Ct, generaliz-

ing the real-time systems, modeled using mutable variables

and timed behavioral patterns, such as delay, deadline, inter-

rupt, etc. Secondly, to capture real-time specifications, we in-

troduce TimEffs, a new effects logic, that extends Regular Ex-

pressions with dependent values and arithmetic constraints.

Thirdly, the forward verifier infers temporal behaviors of

given Ct programs, expressed in TimEffs. Lastly, we present

a purely algebraic term rewriting system, to efficiently prove

language inclusions between TimEffs. To demonstrate the

proposal’s feasibility, we prototype the verification system;

prove its soundness; report on experimental results.

CCS Concepts: · Theory of computation → Logic and

verification; Program verification; Automated reasoning;

Linear logic.

Keywords: Temporal Verification, Dependant Effects, Term

Rewriting System, Timed Verification

ACM Reference Format:

Yahui Song and Wei-Ngan Chin. 2022. Automated Verification for

Real-Time Systems using Implicit Clocks and an Extended An-

timirov Algorithm. In Companion Proceedings of the 2022 ACM SIG-

PLAN International Conference on Systems, Programming, Languages,

and Applications: Software for Humanity (SPLASH Companion ’22),

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

SPLASH Companion ’22, December 5ś10, 2022, Auckland, New Zealand

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9901-2/22/12.

https://doi.org/10.1145/3563768.3563953

December 5ś10, 2022, Auckland, New Zealand. ACM, New York, NY,

USA, 3 pages. https://doi.org/10.1145/3563768.3563953

1 Introduction

Specification and verification of real-time systems are essen-

tial to research topics with practical implications. During the

last more than two decades, a popular approach for specify-

ing real-time systems has been based on Timed Automata

[1]. Timed Automata are powerful in designing real-time

models with explicit clock variables. Real-time constraints

are captured by explicitly setting/resetting clock variables.

A number of automatic verification support for Timed Au-

tomata have proven to be successful [4, 8ś10].

Models based on Timed Automata often adopt a simple

structure, e.g., a network with no hierarchy. The benefit is

that efficient model checking is made feasible. Nonetheless,

designing and verifying compositional real-time systems is

becoming an increasingly difficult task due to the widespread

applications and increasing complexity of such systems. Un-

like timed process algebras, Timed Automata lack high-level

compositional patterns for hierarchical design. As a result,

users often need to manually cast those terms into a set of

clock variables with carefully calculated clock constraints.

The process is tedious and error-prone.

We investigate an alternative approach for modeling and

verifying compositional real-time systems. In this work, we

propose a novel temporal specification language, which en-

ables a compositional verification via a Hoare-style forward

verifier and a term rewriting system (TRS). More specifically,

we specify system behaviors in the form of Timed Effects

(TimEffs), which integrates the Kleene Algebra with depen-

dent values and arithmetic constraints, to provide real-time

abstractions into traditional linear temporal logics. For ex-

ample, one safety property, "The event Done will be triggered

no later than one time unit"1, is expressed in TimEffs as:

Φ ≜ 0≤t<1 ∧ (_★ · Done)#t

Here, ∧ connects the arithmetic formula and the timed trace,

is a novel operator specifying the real-time constraints for

the logical-time sequences [7]; _ is a wildcard matching to

any event; Kleene star ★ denotes trace repetition. Moreover,

1Without loss of generality, we use integer values to represent time units

in this paper.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

60

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3563768.3563953
https://doi.org/10.1145/3563768.3563953

SPLASH Companion ’22, December 5ś10, 2022, Auckland, New Zealand Yahui Song and Wei-Ngan Chin

the time bounds can be dependent on the program inputs,

demonstrated in Figure 1., where preconditions and postcon-

ditions are marked by req and ens. Function addNSugar takes

a parameter n, representing the portion of the sugar we need

to add. When n=0, it simply raises an event EndSugar to ma-

1 void addOneSugar ()

2 /* req: true ∧ _★

3 ens: t>1 ∧ 𝜖 # t */

4 { timeout ((), 1); }

5

6 void addNSugar(int n)

7 /* req: true ∧ _★

8 ens: t≥n ∧ EndSugar#t*/

9 { if (n == 0)

10 event["EndSugar"]

11 else {

12 addOneSugar ();

13 addNSugar(n-1);}}

Figure 1. Value dependent

specification.

rk the end of the process.

Otherwise, it adds one por-

tion of the sugar by call-

ing addOneSugar(), then re-

cursively calls addNSugar

with parameter n-1. The

use of statement timeout(e

, d) is standard [5], which

executes a block of code e

after the specified time d.

Therefore, the time spent

on adding one portion of

the sugar is more than one

time unit. Note that 𝜖#t

refers to an empty trace

which takes time t. Both preconditions require no arithmetic

constraints, and have no temporal constraints upon the his-

tory traces. The postcondition of addNSugar(n) indicates that

the method generates a finite trace where EndSugar takes a

no less than n time-units delay to finish.

Although these examples are simple, they show the bene-

fits of deploying value-dependent time bounds. Intuitively,

if traditional Timed Automata define an exact transition sys-

tem, TimEffs define a set of exact transition systems.

Moreover, we deploy a Hoare-style forward verifier to

soundly infer the actual behaviors of given programs con-

cerning the well-defined operational semantics. This ap-

proach provides a direct (opposite to the techniques which

require manual and remote modeling processes), and modu-

lar compositional verification for real-time systems, which

are not possible by existing techniques.

Having TimEffs to be the specification language, and the

forward verifier to infer the program behaviors, we are in-

terested in the following verification problem: Given a pro-

gram P, and a temporal specification Φ
′, does the inclusions

Φ
P ⊑ Φ

′ holds? Typically, checking the inclusion/entailment

between the concrete program effectsΦP and the valid traces

Φ
′ proves that: the programP will never lead to unsafe traces

which violate Φ′. The expressiveness of TimEffs goes beyond

finite-state automata, it is not possible to translate them into

Timed Automata and rely on the solving engines of Timed

Automata. Therefore we develop a novel TRS, which is in-

spired by Antimirov and Mosses’ algorithm2 [2] but solving

the language inclusions between more expressive TimEffs.

2Antimirov and Mosses’ algorithm was designed for deciding the inequali-

ties of regular expressions based on an axiomatic algorithm of the algebra

of regular sets.

2 Verification Overview

The proposed verification framework is shown in Figure 2.

Rounded boxes are the main procedures, and both return

true when the forward reasoning/proving succeeds, return

false otherwise. Rectangular boxes describe the inputs to the

procedures. The forward verifier relies on the TRS.

Figure 2. System Overview.

The inputs of

the forward ver-

ifier are target

programs anno-

tated with tem-

poral specifica-

tions. The in-

put of the TRS

is a pair of effects LHS and RHS, referring to the inclusion

LHS ⊑ RHS to be checked (⊑ captures the inclusion relation

between effects. LHS refers to left-hand-side effects, and RHS

refers to right-hand-side effects.). Besides, the verifier calls the

TRS to prove produced inclusions, i.e., between the current

effects states and assertions. Our main contributions are:

1. LanguageAbstraction:we define a core language Ct, via

its syntax and semantics, generalizing the real-time systems

with mutable variables and timed behavioral patterns.

2. Specification Language: we propose TimEffs, by defin-

ing its syntax and semantics, gaining the expressive power

beyond traditional modeling languages for real-time systems.

3. Automated Forward Verifier: we establish a sound ax-

iomatic semantics to infer the temporal behaviors of given

target programs. The verifier triggers the back-end TRS.

4. AnEfficient TRS:we present the rewriting rules to prove

the inclusion relations between the inferred behaviors and

the given temporal specifications, both in TimEffs.

5. Implementation and Evaluation: we prototype Tim-

Effs and the automated verification system, prove the sound-

ness, report on case studies and experimental results.

3 Implementation and Evaluation

Weprototype our automated verification system usingOCaml.

The proof obligations, for arithmetic constraints, generated

by the verifier are discharged using constraint solver Z3 [3].

We prove termination and soundness of both the forward

verifier and the TRS. We validate our implementation against

the state-of-the-art PAT [6] model checker for conformance.

4 Conclusion

We define the syntax and semantics of TimEffs, to capture

real-time systems’ behaviors and temporal properties. We

demonstrate how to give an axiomatic semantics to Ct by

timed-trace processing functions, which enables our Hoare-

style forward verifier, to constructively compute the program

effects. We present an effects inclusion checker (the TRS)

to prove the annotated temporal properties efficiently. We

prototype the verification system and show its feasibility.

61

Automated Verification for Real-Time Systems using Implicit Clocks and ... SPLASH Companion ’22, December 5ś10, 2022, Auckland, New Zealand

References
[1] Rajeev Alur and David L. Dill. 1994. A Theory of Timed Automata.

Theor. Comput. Sci. 126, 2 (1994), 183ś235. https://doi.org/10.1016/0304-

3975(94)90010-8

[2] Valentin M. Antimirov and Peter D. Mosses. 1995. Rewriting Extended

Regular Expressions. Theor. Comput. Sci. 143, 1 (1995), 51ś72. https:

//doi.org/10.1016/0304-3975(95)80024-4

[3] Leonardo Mendonça de Moura and Nikolaj Bjùrner. 2008. Z3: An

Efficient SMT Solver. In Tools and Algorithms for the Construction

and Analysis of Systems, 14th International Conference, TACAS 2008,

Held as Part of the Joint European Conferences on Theory and Practice

of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.

Proceedings (Lecture Notes in Computer Science), C. R. Ramakrishnan

and Jakob Rehof (Eds.), Vol. 4963. Springer, 337ś340. https://doi.org/

10.1007/978-3-540-78800-3_24

[4] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. 1997. UPPAAL

in a Nutshell. Int. J. Softw. Tools Technol. Transf. 1, 1-2 (1997), 134ś152.

https://doi.org/10.1007/s100090050010

[5] Parewa Labs Pvt. Ltd. 2022. https://www.programiz.com/javascript/

setTimeout.

[6] Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. 2009. PAT: Towards

Flexible Verification under Fairness. In Computer Aided Verification,

21st International Conference, CAV 2009, Grenoble, France, June 26 -

July 2, 2009. Proceedings (Lecture Notes in Computer Science), Ahmed

Bouajjani and Oded Maler (Eds.), Vol. 5643. Springer, 709ś714. https:

//doi.org/10.1007/978-3-642-02658-4_59

[7] Reinhard von Hanxleden, Timothy Bourke, and Alain Girault. 2017.

Real-time ticks for synchronous programming. In 2017 Forum on Speci-

fication and Design Languages, FDL 2017, Verona, Italy, September 18-20,

2017, Franco Fummi, Hiren D. Patel, and Samarjit Chakraborty (Eds.).

IEEE, 1ś8. https://doi.org/10.1109/FDL.2017.8303893

[8] Farn Wang, Rong-Shiung Wu, and Geng-Dian Huang. 2005. Verifying

Timed and Linear Hybrid Rule-Systems with RED. In Proceedings of the

17th International Conference on Software Engineering and Knowledge

Engineering (SEKE’2005), Taipei, Taiwan, Republic of China, July 14-16,

2005, William C. Chu, Natalia Juristo Juzgado, and W. Eric Wong (Eds.).

448ś454.

[9] XinyuWang, Jun Sun, TingWang, and Shengchao Qin. 2017. Language

Inclusion Checking of Timed Automata with Non-Zenoness. IEEE

Trans. Software Eng. 43, 11 (2017), 995ś1008. https://doi.org/10.1109/

TSE.2017.2653778

[10] Sergio Yovine. 1997. KRONOS: A Verification Tool for Real-Time

Systems. Int. J. Softw. Tools Technol. Transf. 1, 1-2 (1997), 123ś133.

https://doi.org/10.1007/s100090050009

62

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(95)80024-4
https://doi.org/10.1016/0304-3975(95)80024-4
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/s100090050010
https://www.programiz.com/javascript/setTimeout
https://www.programiz.com/javascript/setTimeout
https://doi.org/10.1007/978-3-642-02658-4_59
https://doi.org/10.1007/978-3-642-02658-4_59
https://doi.org/10.1109/FDL.2017.8303893
https://doi.org/10.1109/TSE.2017.2653778
https://doi.org/10.1109/TSE.2017.2653778
https://doi.org/10.1007/s100090050009

	Abstract
	1 Introduction
	2 Verification Overview
	3 Implementation and Evaluation
	4 Conclusion
	References

