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Abstract. The correctness of real-time systems depends both on the
correct functionalities and the realtime constraints. To go beyond the
existing Timed Automata based techniques, we propose a novel solu-
tion that integrates a modular Hoare-style forward verifier with a term
rewriting system (TRS) on Timed Effects (TimEffs). The main purposes
are to: increase the expressiveness, dynamically manipulate clocks, and
efficiently solve clock constraints. We formally define a core language C t ,
generalizing the real-time systems, modeled using mutable variables and
timed behavioral patterns, such as delay, timeout, interrupt, deadline.
Secondly, to capture real-time specifications, we introduce TimEffs, a
new effects logic, that extends regular expressions with dependent values
and arithmetic constraints. Thirdly, the forward verifier reasons tempo-
ral behaviors – expressed in TimEffs – of target C t programs. Lastly, we
present a purely algebraic TRS, i.e., an extended Antimirov algorithm, to
efficiently check language inclusions between TimEffs. To demonstrate
the feasibility of our proposal, we prototype the verification system; prove
its soundness; report on case studies and experimental results.

1 Introduction

During the last three decades, a popular approach for specifying real-time sys-
tems has been based on Timed Automata (TAs) [1]. TAs are powerful in design-
ing real-time models via explicit clocks, where real-time constraints are captured
by explicitly setting/resetting clock variables. A number of automatic verifica-
tion tools for TAs have proven to be successful [2–5]. Industrial case studies
show that requirements for real-time systems are often structured into phases,
which are then composed sequentially, in parallel, alternatively [6, 7]. TAs lack
high-level compositional patterns for hierarchical design; moreover, users often
need to manipulate clock variables with carefully calculated clock constraints
manually. The process is tedious and error-prone.

There have been some translation-based approaches on building verification
support for compositional timed-process representations. For example, Timed
Communicating Sequential Process (TCSP), Timed Communicating Object-Z
(TCOZ) and Statechart based hierarchical Timed Automata are well suited for
presenting compositional models of complex real-time systems. Prior works [8,9]
systematically translate TCSP/TCOZ/Statechart models to flat TAs so that the
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model checker Uppaal [3] can be applied. However, possible insufficiencies are:
the expressiveness power is limited by the finite-state automata; and there is
always a gap between the verified logic and the actual code implementation.

In this work, we investigate an alternative approach for verifying real-time
systems. We propose a novel temporal specification language, Timed Effects
(TimEffs), which enables a compositional verification via a Hoare-style forward
verifier and a term rewriting system (TRS). More specifically, we specify system
behaviors in the form of TimEffs, which integrates the Kleene Algebra with
dependent values and arithmetic constraints, to provide real-time abstractions
into traditional linear temporal logics. For example, one safety property, “The
event Done will be triggered no later than one time unit”1, is expressed in TimEffs
as: Φ , 0≤t<1 ∧ ( ? · Done)#t. Here ∧ connects the arithmetic formula and the
timed trace; the operator # binds time variables to traces (here t is a time bound
of ( ? ·Done)); is a wildcard matching to any event; Kleene star ? denotes a trace
repetition. The above formula Φ corresponds to ‘♦[0 ,1)Done’ in metric temporal
logic (MTL), reads “within one time unit, Done finally happens”. Furthermore,
the time bounds can be dependent on the program inputs, as shown in Fig. 1.

1 void addOneSugar ()

2 /* req: true ∧ ?

3 ens: t>1 ∧ ε # t */

4 { timeout ((), 1); }

5

6 void addNSugar (int n)

7 /* req: true ∧ ?

8 ens: t≥n ∧ EndSugar # t */

9 { if (n == 0) {

10 event ["EndSugar"];}

11 else {

12 addOneSugar ();

13 addNSugar (n-1);}}

Fig. 1. Value-dependent specification.

Function addNSugar takes a parameter
n, representing the portion of the sugar to
add. When n=0, it raises an event EndSugar

to mark the end of the process. Otherwise,
it adds one portion of the sugar by call-
ing addOneSugar(), then recursively calls
addNSugar with parameter n-1. The use of
timeout(e, d) is standard [11], which exe-
cutes a block of code e after the specified
time d. Therefore, the time spent on adding
one portion of the sugar is more than one
time unit. Note that ε#t refers to an empty
trace which takes time t. Both precondi-
tions require no arithmetic constraints and
no temporal constraints upon the history

traces. The postcondition of addNSugar(n) indicates that the method generates
a finite trace where EndSugar takes a no less than n time-units delay to finish.

Although these examples are simple, they show the benefits of deploying
value-dependent time bounds, which is beyond the capability of TAs. Essen-
tially, TimEffs define symbolic TAs, which stands for a set (possibly infinite) of
concrete transition systems. Moreover, we deploy a Hoare-style forward verifier
to soundly reason about the behaviors from the source level, with respect to the
well-defined operational semantics. This approach provides a direct (opposite
to the techniques which require manual and remote modeling processes), and
modular verification – where modules can be replaced by their already verified
properties – for real-time systems, which are not possible by any existing tech-

1 In this paper, we pretend time is discrete and only integral values. However, it’s just
as easy to represent continuous time by letting time variables assume real values [10].
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niques. Furthermore, we develop a novel TRS, which is inspired by Antimirov
and Mosses’ algorithm2 [12] but solving the language inclusions between more
expressive TimEffs. In short, the main contributions of this work are:

1. Language Abstraction: we formally define a core language C t , by defining
its syntax and operational semantics, generalizing the real-time systems with
mutable variables and timed behavioral patterns, e.g., delay, timeout, deadline.
2. Novel Specification: we propose TimEffs, by defining its syntax and se-
mantics, gaining the expressive power beyond traditional linear temporal logics.
3. Forward Verifier: we establish a sound effect system to reason about tem-
poral behaviors of given programs. The verifier triggers the back-end solver TRS.
4. Efficient TRS: we present the rewriting rules to (dis)prove the inclusion rela-
tions between the actual behaviors and the given specifications, both in TimEffs.
5. Implementation and Evaluation: we prototype the automated verification
system, prove its soundness, report on case studies and experimental results.

2 Overview

Fig. 2. System Overview.

An overview of our automated verifi-
cation system is given in Fig. 2. The
system consists of a forward verifier
and a TRS, i.e., the rounded boxes.
The input of the forward verifier is a
C t program annotated with tempo-
ral specifications written in TimEffs.
The input of the TRS is a pair of ef-
fects LHS and RHS, referring to the
inclusion LHS v RHS3 to be checked
(LHS and RHS refer to left/right-hand-side effects respectively). The forward
verifier calls TRS to solve proof obligations. Next, we use Fig. 3 to highlight our
main methodologies, which simulates a coffee machine, that dynamically adds
sugar based on the user’s input number.
2.1 . TimEffs. We define Hoare-triple style specifications (enclosed in /*...*/)
for each function, which leads to a compositional verification strategy, where
static checking can be done locally. The precondition of makeCoffee specifies
that the input value n is non-negative, and it requires that before entering into
this function, this history trace must contain the event CupReady on the tail. The
verification fails if the precondition is not satisfied at the caller sites. Line 17
sets a five time-units deadline (i.e., maximum 5 portion of sugar per coffee) while
calling addNSugar (defined in Fig. 1); then emits event Coffee with a deadline,
indicating the pouring coffer process takes no more than four time-units. The
precondition of main requires no arithmetic constraints (expressed as true) and
an empty history trace. The postcondition of main specifies that before the final

2 Antimirov and Mosses’ algorithm was designed for deciding the inequalities of regular
expressions based on an axiomatic algorithm of the algebra of regular sets.

3 The TimEffs inclusion relation v is formally defined in Definition 3.
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Done happens, there is no occurrence of Done (! indicates the absence of events);
and the whole process takes no more than nine time-units to hit the final event.

14 void makeCoffee (int n)

15 /* req: n≥0 ∧ ?· CupReady
16 ens: n≤t≤5 ∧ t’≤4 ∧

(EndSugar # t) · (Coffee # t’) */

17 { deadline (addNSugar(n), 5);

18 deadline (event["Coffee"],4);}

19

20 int main ()

21 /* req: true ∧ ε
22 ens: t≤9 ∧ ((!Done)? # t) · Done */

23 { event["CupReady"];

24 makeCoffee (3);

25 event["Done"];}

Fig. 3. To make coffee with three portions of
sugar within nine time units.

TimEffs support more fea-
tures such as disjunctions, guards,
parallelism and assertions, etc
(cf. Sec. 3.3), providing de-
tailed information upon: branch-
ing properties: different arith-
metic conditions on the inputs
lead to different effects; and re-
quired history traces: by defin-
ing the prior effects in precondi-
tion. These capabilities are be-
yond traditional timed verifica-
tion, and cannot be fully cap-
tured by any prior works [2–5, 8,
9]. Nevertheless, the increase in

expressive power needs support from finer-grind reasoning and a more sophisti-
cated back-end solver, discharged by our forward verifier and TRS.

1. void addOneSugar(){ // initialize the state using the function precondition.

ΦC=Φ
addOneSugar(n)
pre = {true ∧ ? } [FV -Meth]

2. timeout ((), 1);}

Φ′C={t1>1 ∧ ? · (ε # t1)} [FV -Timeout ]

3. Φ′C v Φ
addOneSugar(n)
pre · ΦaddOneSugar(n)

post ⇔ t1>1 ∧ ? · (ε#t1) v t>1 ∧ ? · (ε#t)

4. void addNSugar (int n){ // initialize the state using the function precondition.

ΦC=Φ
addNSugar(n)
pre = {true ∧ ?} [FV -Meth]

5. if (n == 0){

{n=0 ∧ ?} [FV -Cond ]
6. event ["EndSugar"];}

{n=0 ∧ ?· EndSugar} [FV -Event ]
7. else {

{n6=0 ∧ ?} [FV -Cond ]
8. addOneSugar();

{n6=0∧t2>1 ∧ ? · (ε # t2)} [FV -Call ]
9. addNSugar (n-1);}}

n6=0∧t2>1 ∧ ? · (ε # t2) v Φ
addNSugar(n-1)
pre // TRS: precondition checked.

{n6=0∧t2>1 ∧ ? · (ε # t2) · ΦaddNSugar(n-1)
post } [FV -Call ]

10. Φ′C = (n=0 ∧ ?·EndSugar) ∨ (n6=0∧t2>1 ∧ ?·(ε#t2)·ΦaddNSugar(n-1)
post )

11. Φ′C v Φ
addNSugar(n)
pre ⇔ //TRS: postcondition checked, cf. Table 1

(n=0 ∧ EndSugar) ∨ (n 6=0∧t2>1 ∧ (ε # t2) · ΦaddNSugar(n-1)
post ) v Φ

addNSugar(n)
post

Fig. 4. The forward verification examples (t1 and t2 are fresh time variables).

2.2 . Forward Verification. Fig. 4 demonstrates the forward verification of
functions addOneSugar and addNSugar, defined in Fig. 1. The effects states are
captured in the form of {ΦC}. To facilitate the illustration, we label the steps
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by (1) to (11), and mark the deployed forward rules (cf. Sec. 4.1) in [gray]. The
initial states (1) and (4) are obtained from the preconditions, by the [FV -Meth]
rule. States (5)(7)(10) are obtained by [FV -Cond ], which enforces the condi-
tional constraints into the effects states, and unions the effects accumulated
from two branches. State (6) is obtained by [FV -Event ], which concatenates an
event to the current effects. The intermediate states (8) and (9) are obtained
by [FV -Call ]. Before each function call, [FV -Call ] invokes the TRS to check
whether the current effects states satisfy callees’ preconditions. If it is not sat-
isfied, the verification fails; otherwise, it concatenates the callee’s postcondition
to the current states (the precondition check for step (8) is omitted here).

State (2) is obtained by [FV -Timeout ], which adds a lower time-bound to an
empty trace. After these state transformations, steps (3) and (11) invoke the TRS
to check the inclusions between the final effects and the declared postconditions.
2.3 . The TRS. Having TimEffs to be the specification language, and the
forward verifier to reason about the actual behaviors, we are interested in the
following verification problem: Given a program P, and a temporal specification
Φ′, does the inclusions ΦP v Φ′ holds? Typically, checking the inclusion/entail-
ment between the concrete program effects ΦP and the expected property Φ′

proves that: the program P will never lead to unsafe traces which violate Φ′.
Our TRS is an extension of Antimirov and Mosses’s algorithm [12], which

can be deployed to decide inclusions of two regular expressions (REs) through
an iterated process of checking inclusions of their partial derivatives [13]. There
are two basic rules: [Disprove] infers false from trivially inconsistent inclusions;
and [Unfold ] applies Definition 2 to generate new inclusions.

Definition 1 (Derivative). Given any formal language S over an alphabet Σ
and any string u∈Σ∗, the derivative of S with respect to u is defined as:

u-1S={w∈Σ∗ | uw∈S}.

Definition 2 (REs Inclusion). For REs r and s, r�s⇔∀(A∈Σ ).A-1 (r)�A-1 (s).

Definition 3 (TimEffs Inclusion). For TimEffs Φ1 and Φ2 ,
Φ1 v Φ2 ⇔ ∀A.∀t≥0 . (A#t)-1 Φ1 v (A#t)-1 Φ2 .

Similarly, we defined Definition 3 for unfolding the inclusions between Tim-
Effs, where (A#t)-1 Φ is the partial derivative of Φ w.r.t the event A with the time
bound t. Termination of the rewriting is guaranteed because the set of derivatives
to be considered is finite, and possible cycles are detected using memorization
(cf. Table 5) [14]. Next, we use Table 1 to demonstrate how the TRS automati-
cally proves the final effects of main satisfying its postcondition (shown at step
(11) in Fig. 4). We mark the rewriting rules (cf. Sec. 5) in [gray].

In Table 1, step 1○ renames the time variables to avoid the name clashes
between the antecedent and the consequent. Step 2○ splits the proof tree into
two branches, according to the different arithmetic constraints, by rule [LHS-OR].
In the first branch, step 3○ eliminates the event ES from the head of both sides,
by rule [UNFOLD]. Step 4○ proves the inclusion, because evidently the consequent
tR≥0 ∧ ε#tR contains ε when tR=0. In the second branch, step 5○ eliminates a
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Table 1. An inclusion proving example. (I ) is the right hand side sub-tree of the the
main rewriting proof tree. (ES stands for the event EndSugar)

4○ [PROVE]
n=0 ∧ ε v tR≥0 ∧ ε # tR 3○ [UNFOLD]
n=0 ∧ ��ES v tR≥0 ∧ ��ES#tR (I )

2○ [LHS-OR]
(n=0∧ES) ∨ (n6=0∧t2>1∧tL≥(n-1)∧ ε#t2 · ES#tL) v tR≥n ∧ ES#tR

1○ [RENAME]
(n=0 ∧ ES) ∨ (n6=0∧t2>1 ∧ (ε # t2) · ΦaddNSugar(n-1)

post ) v Φ
addNSugar(n)
post

(I )
t2>1∧tL≥(n-1) ∧ tL=(tR-t2) ⇒ tR≥n 7○ [PROVE]
n6=0∧t2>1∧tL≥(n-1) ∧ ε v tR≥n ∧ ε

6○ [UNFOLD] πu:tL=(tR-t2)
n6=0∧t2>1∧tL≥(n-1) ∧ ����ES#tL v tR≥n ∧ ((((((

((
ES#(tR-t2)

5○ [UNFOLD]
n 6=0∧t2>1∧tL≥(n-1) ∧ ���ε#t2· ES#tL v tR≥n ∧ ES���#tR

time duration ε#t2 from both sides. Therefore the rule [UNFOLD] subtracts a time
duration from the consequent, i.e., (tR-t2). Similarly, step 6○ eliminates ES#tL
from the both sides, adding tL=(tR-t2) to the unification constraints. Step 7○
proves t2>1∧tL≥(n-1)∧tL=(tR-t2)⇒tR≥n 4; therefore, the proof succeed.
2.4 . Verifying the Fischer’s Mutual Exclusion Protocol. Fig. 5 presents

Fig. 5. Fischer’s mutually exclusion algorithm.

the classical Fischer’s mutu-
ally exclusion protocol, in C t .
Global variables x and cs indi-
cate ‘which process attempted
to access the critical section
most recently’ and ‘the number
of processes accessing the crit-
ical section’ respectively. The
main procedure is a parallel
composition of three processes,
where d and e are two con-
stants. Each process attempts
to enter the critical section
when x is -1, i.e. no other pro-
cess is currently attempting.
Once the process is active (i.e.,
reaches line 6), it sets x to
its identity number i within d

time units, captured by deadline(...,d). Then it idles for e time units, captured
by delay(e) and then checks whether x still equals to i. If so, it safely enters the
critical section. Otherwise, it restarts from the beginning. Quantitative timing
constraint d<e plays an important role in this algorithm to guarantee mutual ex-
clusion. One way to prove mutual exclusion is to show that cs≤1 is always true.
Or, using event temporal logic, we can show that the occurrence of Critical

always indicates the next event is Exit. We show in Sec. 6 that our prototype
system can verify such algorithms symbolically.

4 The proof obligations for arithmetic constraints are discharged by the Z3 solver [15].
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3 Language and Specifications

3.1 The Target Language

We define the core language C t in Fig. 6, which is built based on C syntax and
provides support for timed behavioral patterns.

(Program) P ::= (α∗,meth∗)
(Types) ι ::= int | bool | void
(Method) meth ::= ι mn (ι x )∗ {req Φpre ens Φpost} {e}
(Values) v ::= () | c | b | x
(Assignment) α ::= x := v
(Expressions) e ::= v | α | [v ]e | mn(v∗) | e1 ; e2 | e1 ||e2 | if v e1 e2 | event[A(v , α∗)]

| delay[v ] | e1 timeout[v ] e2 | e deadline[v ] | e1 interrupt[v ] e2

(Terms) t ::= c | x | t1+t2 | t1 -t2

c ∈ Z b ∈ B mn, x ∈ var (Action labels) A ∈ Σ

Fig. 6. A core first-order imperative language with timed constructs via implicit clocks.

Here, c and b stand for integer and Boolean constants, mn and x are meta-
variables, drawn from var (the countably infinite set of arbitrary distinct identi-
fiers). A program P comprises a list of global variable initializations α∗ and a list
of method declarations meth∗. Here, we use the ∗ superscript to denote a finite
list of items, for example, x∗ refers to a list of variables, x1 , ..., xn . Each method
meth has a name mn, an expression-oriented body e, also is associated with a
precondition Φpre and a postcondition Φpost (specification syntax is given in Fig.
7). C t allows each iterative loop to be optimized to an equivalent tail-recursive
method, where mutation on parameters is made visible to the caller.

Expressions comprise: values v ; guarded processes [v ]e, where if v is true, it
behaves as e, else it idles until v becomes true; method calls mn(v∗); sequential
composition e1 ; e2 ; parallel composition e1 ||e2 , where e1 and e2 may communi-
cate via shared variables; conditionals if v e1 e2 ; and event raising expressions
event[A(v , α∗)] where the event A comes from the finite set of event labels Σ .
Without loss of generality, events can be further parametrized with one value
v and a set of assignments α∗ to update the mutable variables. Moreover, a
number of timed constructs can be used to capture common real-time system
behaviors, which are explained via operational semantics rules in Sec. 3.2.

3.2 Operational Semantics of C t

To build the semantics of the system model, we define the notion of a configura-
tion in Definition 4, to capture the global system state during system execution.

Definition 4 (System configuration). A system configuration ζ is a pair
(S, e) where S is a variable valuation function (or a stack) and e is an expression.

A transition of the system is of the form ζ
l−→ ζ ′ where ζ and ζ ′ are the

system configurations before and after the transition respectively. Transition
labels l include: d, denoting a non-negative integer; τ , denoting an invisible
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event; A, denoting an observable event. For example, ζ
d−→ ζ ′ denotes a d time-

units elapse. Next, we present the firing rules, associated with timed constructs.
Process delay[v] idles for exactly t time units. Rule [delay1 ] states that the

process may idle for any amount of time given it is less than or equal to t ; Rule
[delay2 ] states that the process terminates immediately when t becomes 0 .

d≤v

(S, delay[v ])
d−→ (S, delay[v -d])

[delay1 ]
(S, delay[0 ])

τ−→ (S, ())
[delay2 ]

In e1 timeout[v] e2, the first observable event of e1 shall occur before t time
units; otherwise, e2 takes over the control after exactly t time units. Note that
the usage of timeout in Fig. 1 is a special case where e1 never starts by default.

(S, e1 )
A−→ (S ′, e ′1 )

(S, e1 timeout[v ] e2 )
A−→(S ′, e ′1 )

[to1 ]
(S, e1 )

τ−→ (S ′, e ′1 )

(S, e1 timeout[v ] e2 )
τ−→(S ′, e ′1 timeout[v ]e2 )

[to2 ]

(S, e1 )
d−→ (S, e ′1 ) (d≤v)

(S, e1 timeout[v ] e2 )
d−→(S, e ′1 timeout[v -d]e2 )

[to3 ]
(S, e1 timeout[0 ]e2 )

τ−→(S, e2 )
[to4 ]

Process deadline [v] e behaves exactly as e except that it must terminate
before t time units. The guarded process [v ]e behaves as e when v is true,
otherwise it idles until v becomes true. Process e1 interrupt[v] e2 behaves as
e1 until t time units, and then e2 takes over. We leave the rest rules in [16].

(S, e)
A/τ−−→ (S ′, e ′)

(S, deadline[v ] e)
A/τ−−→ (S ′, deadline[v ] e ′)

[ddl1 ]
(S, e)

l−→ (S ′, v)

(S, deadline[v ] e)
l−→ (S ′, v)

[ddl2 ]

S |= (v=true)

(S, [v ]e)
τ−→ (S, e)

[gu1 ]
(S, e)

d−→ (S, e ′) (d≤v)

(S, deadline[v ] e)
d−→ (S, deadline[v -d] e ′)

[ddl3 ]

S 6|= (v=true)

(S, [v ]e)
τ−→ (S, [v ]e)

[gu2 ]
(S, e1 )

A/τ−−→ (S ′, e ′1 )

(S, e1 interrupt[v ] e2 )
A/τ−−→ (S ′, e ′1 interrupt[v ] e2 )

[int1 ]

(S, e1 )
l−→ (S ′, v)

(S, e1 interrupt[v ] e2 )
l−→(S ′, v)

[int2 ]
(S, e1 interrupt[0 ] e2 )

τ−→ (S, e2 )
[int3 ]

(S, e1 )
d−→ (S, e ′1 ) (d≤v)

(S, e1 interrupt[v ] e2 )
d−→ (S, e ′1 interrupt[v -d] e2 )

[int4 ]

3.3 The Specification Language

We plant TimEffs specifications into the Hoare-style verification system, using
Φpre and Φpost to capture the temporal pre/post conditions. As shown in Fig. 7,
TimEffs can be constructed by a conditioned event sequence π ∧ θ; or an effects
disjunction Φ1 ∨ Φ2. Timed sequences comprise nil (⊥); empty trace ε; single
event ev ; concatenation θ1 · θ2 ; disjunction θ1 ∨ θ2 ; parallel composition θ1 ||θ2 ;
a block waiting for a certain constraint to be satisfied π?θ. We introduce a new
operator #, and θ#t represents the trace θ takes t time units to complete, where t
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(Timed Effects) Φ ::= π ∧ θ | Φ1 ∨ Φ2

(Event Sequences) θ ::= ⊥ | ε | ev | θ1 · θ2 | θ1 ∨ θ2 | θ1 ||θ2 | π?θ | θ#t | θ?
(Events) ev ::= A(v , α∗) | τ(π) | A |

(Pure) π ::= True | False | bop(t1, t2) | π1 ∧ π2 | π1∨π2 | ¬π | π1⇒π2

(Real-Time Terms) t ::= c | x | t1+t2 | t1 -t2

c ∈ Z x ∈ var (Real Time Bound) # (Kleene Star) ?

Fig. 7. Syntax of TimEffs.

is a real-time term. A timed sequence also can be constructed by θ?, representing
zero or more times repetition of the trace θ. For single events, A(v , α∗) stands
for an observable event with label A, parameterized by v , and the assignment
operations α∗; τ(π) is an invisible event, parameterized with a pure formula π5.

Events can also be A, referring to all events which are not labeled using
A; and a wildcard , which matches to all the events. We use π to denote a
pure formula which captures the (Presburger) arithmetic conditions on terms or
program parameters. We use bop(t1 , t2 ) to represent binary atomic formulas of
terms (including =, >, <, ≥ and ≤). Terms consist of constant integer values
c; integer variables x ; simple computations of terms, t1+t2 and t1-t2 .

3.4 Semantic Model of Timed Effects

Let d ,S, ϕ|=Φ denote the model relation, i.e., a stack S, a concrete execution
trace ϕ take d time units to complete, and they satisfy the specification Φ.

d ,S, ϕ |= Φ1 ∨ Φ2 iff d ,S, ϕ |= Φ1 or d ,S, ϕ |= Φ2

d ,S, ϕ |= π ∧ ε iff d=0 and JπKs=True and ϕ=[]

d ,S, ϕ |= π ∧ ev iff d=0 and JπKs=True and ϕ=[ev]

d ,S, ϕ |= π ∧ (θ1 · θ2 ) iff ∃ϕ1 , ϕ2 . ϕ1++ϕ2 =ϕ and ∃d1 , d2 . d1 +d2 =d
s.t. d1 ,S, ϕ1 |=π ∧ θ1 and d2 ,S, ϕ2 |=π ∧ θ2

d ,S, ϕ |= π ∧ (θ1∨θ2 ) iff d ,S, ϕ |= π ∧ θ1 or d ,S, ϕ |= π ∧ θ2

d ,S, ϕ |= π∧(ev1 ·θ1 )||(ev2 ·θ2 ) iff d ,S, ϕ |= π ∧ ev1 · (θ1 ||(ev2 · θ2 )) or
d ,S, ϕ |= π ∧ ev2 · ((ev1 · θ1 )||θ2 )

d ,S, ϕ |= π∧(ev · θ1 )||(ev · θ2 ) iff d ,S, ϕ |= π ∧ ev · (θ1 ||θ2 )

d ,S, ϕ |= π ∧ (ε#t1 )||(ε#t2 ) iff d ,S, ϕ |= (π∧t1≥t2 ) ∧ (ε#t1 ) · (ε#(t1 -t2 )) or
d ,S, ϕ |= (π∧t1<t2 ) ∧ (ε#t2 ) · (ε#(t2 -t1 ))

d ,S, ϕ |= π ∧ π1 ?θ iff Jπ1 Ks=True, d ,S, ϕ |= π ∧ θ or
Jπ1 Ks=False, d ,S, ϕ |= π ∧ π1 ?θ

d ,S, ϕ |= π ∧ θ#t iff Jπ ∧ t≥0 Ks=True, ∃θ1 , θ2 . θ1 · θ2 =θ, fresh t1, t2, s.t.
d ,S, ϕ|=(π ∧ t1≥0∧t2≥0∧t1 +t2 =t)∧(θ1#t1 )·(θ2#t2 )

d ,S, ϕ |= π ∧ θ? iff d ,S, ϕ |= π ∧ ε or d ,S, ϕ |= π ∧ θ · θ?

d ,S, ϕ |= false iff JπKs=False or ϕ=⊥

Fig. 8. Semantics of TimEffs.

5 The difference between τ(π) and π? is: τ(π) marks an assertion which leads to false
(⊥) if π is not satisfied, whereas π? waits until π is satisfied.
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To define the model, var is the set of program variables, val is the set of
primitive values; and d , S, ϕ are drawn from the following concrete domains: d :
N, S: var→val and ϕ: list of event. As shown in Fig. 8, ++ appends event se-
quences; [] describes the empty sequences, [ev ] represents the singleton sequence
contains event ev ; JπKS=True represents π holds on the stack S. Notice that,
simple events, i.e., without #, are taken to be happening in instant time.

3.5 . Expressiveness. TimEffs draw similarities to metric temporal logic (MTL),
which is derived from LTL, where a set of non-negative real numbers is added
to temporal modal operators. As shown in Table 2, we are able to encode MTL
operators into TimEffs, making it more intuitive and readable. The basic modal
operators are: � for “globally”; ♦ for “finally”; © for “next”; U for “until”, and

their past time reversed versions:
←−
� ;
←−
♦ ; and 	 for “previous”; S for “since”.

I in MTL is the time interval with concrete upper/lower bounds; whereas in
TimEffs they can be symbolic bounds which are dependent on program inputs.

Table 2. Examples for converting MTL formulae into TimEffs with t∈I applied.

Φpost �I A ≡ (A?)#t ♦I A ≡ ( ? · A)#t ©I A ≡ ( )#t · A AUI B ≡ (A?)#t · B
Φpre

←−
� I A ≡ (A?)#t

←−
♦ I A ≡ (A · ?)#t 	I A ≡ A · (( )#t) ASI B ≡ B · ((A?)#t)

4 Automated Forward Verification

4.1 Forward Rules

Forward rules are in the Hoare-style triples S ` {Π ,Θ} e {Π ′,Θ ′}, where S is
the stack environment; {Π ,Θ} and {Π ′,Θ ′} are program states, i.e., disjunc-
tions of conditioned event sequence π ∧ θ. The meaning of the transition is:
{Π ′,Θ ′} =

⋃|{Π ,Θ}|-1
i=0 {Π ′i ,Θ ′i} where (πi∧θi) ∈ {Π ,Θ} and ` {πi , θi} e {Π ′i ,Θ ′i}6.

We here present the rules for time-related constructs and leave the rest rules
in [16]. Rule [FV -Delay ] creates a trace ε#t , where t is fresh, and concatenates
it to the current program state, together with the additional constraint t=v .
Rule [FV -Deadline] computes the effects from e and adds an upper time-bound
to the results. Rule [FV -Timeout ] computes the effects from e1 and e2 using
the starting state {π, ε}. The final state is an union of possible effects with
corresponding time bounds and arithmetic constraints. Note that, hd(Θ1 ) and
tl(Θ1 ) return the event head (cf. Definition 6), and the tail of Θ1 respectively.

[FV -Delay]
θ′ = θ · (ε#t) (t is fresh)

S ` {π, θ} delay[v ] {π∧(t=v), θ′}

[FV -Deadline]
S ` {π, ε} e {Π1, Θ1} (t is fresh)

S ` {π, θ} deadline[v ] e {Π1∧(t≤v), θ · (Θ1#t)}
[FV -Timeout ]

S ` {π, ε} e1 {Π1, Θ1} S ` {π, ε} e2 {Π2, Θ2} (t1, t2 are fresh)
{Πf , Θf} = {Π1∧t1<v, (hd(Θ1)#t1) · tl(Θ1)} ∪ {Π2∧t2=v, (ε#t2) ·Θ2}

S ` {π, θ} e1 timeout[v ] e2 {Πf , θ ·Θf }
[FV -Interrupt ]

S ` {π, ε} e1 {Π,Θ} ∆ =
⋃|{Π,Θ}|-1
i=0 ℵInterrupt(v,πi )

Interleave (θi, ε) S ` {∆} e2 {Π ′, Θ′}
S `{π, θ} e1 interrupt[v ] e2 {Π ′, θ ·Θ ′}

6 |{Π ,Θ}| is the size of {Π ,Θ}, i.e., the count of conditioned event sequence π∧θ.
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Algorithm 1: Interruption
Interleaving

Input: v , π, θ, θhis

Output: Program States: ∆
1 function ℵInterrupt(v,π)

Interleave (θ, θhis)
2 ∆← []
3 foreach f∈fstπ(θ) do
4 φ← π∧(t<v) ∧ (θhis#t)
5 θ′ ← Dπ

f (θ)
6 θ′his ← θhis · f
7 ∆′←ℵInterrupt(v,π)

Interleave (θ′, θ′his)
8 ∆← ∆ + φ + ∆′

9 return ∆

[FV -Interrupt ] computes the inter-
ruption interleaves of e1 ’s effects, which
come from the over-approximation
of all the possibilities. For exam-
ple, for trace A · B, the interruption
with time t creates three possibilities:
(ε#t) ∨ (A#t) ∨ ((A · B)#t). Then the rule
continues to compute the effects of
e2 ; lastly, it prepends the original his-
tory θ to the final results. Algorithm 1
presents the interleaving algorithm for
interruptions, where + unions program
states (cf. Definition 7 and Definition 8
for fst and D functions).

Theorem 1 (Soundness of Forward Rules). Given any system configura-
tion ζ=(S, e), by applying the operational semantics rules, if (S, e)→∗(S ′, v) has
execution time d and produces event sequence ϕ; and for any history effect π∧θ,
such that d1 ,S, ϕ1 |=(π∧θ), and the forward verifier reasons S`{π, θ}e{Π ,Θ},
then ∃(π′∧θ′) ∈ {Π ,Θ} such that (d1+d),S ′, (ϕ1++ϕ)|=(π′∧θ′). (ζ−→∗ζ′ denotes

the reflexive, transitive closure of ζ −→ ζ′.)

Proof. See the technical report [16].

5 Temporal Verification via a TRS

The TRS is an automated entailment checker to prove language inclusions be-
tween TimEffs. It is triggered prior to function calls for the precondition check-
ing; and by the end of verifying a function, for the post condition checking.

Given two effects Φ1 and Φ2 , the TRS decides if the inclusion Φ1 v Φ2

is valid. During the effects rewriting process, the inclusions are in the form of
Γ ` Φ1 vΦ Φ2 , a shorthand for: Γ ` Φ · Φ1 v Φ · Φ2 . To prove such inclusions
is to check whether all the possible timed traces in the antecedent Φ1 are legit-
imately allowed in the timed traces described by the consequent Φ2 . Here Γ is
the proof context, i.e., a set of effects inclusion hypothesis; and Φ is the history
effects from the antecedent that have been used to match the effects from the
consequent. The checking is initially invoked with Γ=∅ and Φ=True ∧ ε.
Effects Disjunctions. An inclusion with a disjunctive antecedent succeeds if
both disjunctions entail the consequent. An inclusion with a disjunctive conse-
quent succeeds if the antecedent entails either of the disjunctions.

Γ ` Φ1 v Φ Γ ` Φ2 v Φ

Γ ` Φ1 ∨ Φ2 v Φ
[LHS -OR]

Γ ` Φ v Φ1 or Γ ` Φ v Φ2

Γ ` Φ v Φ1 ∨ Φ2
[RHS -OR]

Now, the inclusions are disjunction-free formulas. Next we provide the defini-
tions and key implementations of auxiliary functions Nullable, First and Deriva-
tive. Intuitively, the Nullable function δπ(θ) returns a Boolean value indicating
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whether π∧θ contains the empty trace; the First function fstπ(θ) computes a set
of initial heads, denoted as h, of π∧θ; the Derivative function Dπ

h (θ) computes
a next-state effects after eliminating the head h from the current effects π ∧ θ.

Definition 5 (Nullable 7). Given any Φ=π ∧ θ, δπ(θ) : bool=

{
true if ε ∈ Jπ∧θK
false if ε /∈ Jπ∧θK

δπ(⊥)=δπ(ev)=false δπ(ε)=δ(θ?)=true δπ(π′?θ)=δπ(θ) δπ(θ1∨θ2 )=δ(θ1 )∨δ(θ2 )

δπ(θ · θ2 )=δ(θ1 )∧δ(θ2 ) δπ(θ1 ||θ2 )=δ(θ1 )∧δ(θ2 ) δπ(θ#t)=SAT (π∧(t=0 )) ∧ δπ(θ)

Definition 6 (Heads). If h is a head of π ∧ θ, then there exist π′ and θ′, such that
π ∧ θ = π′ ∧ (h · θ′). A head can be t, denoting a pure time passing; A(v, α∗), denoting
an instant event passing; or (A(v, α∗), t), denoting an event passing which takes time t.

Definition 7 (First). Given any Φ=π ∧ θ, fstπ(θ) returns a set of heads, be the set
of initial elements derivable from effects π ∧ θ, where (t ′ is fresh):

fstπ(⊥)=fstπ(ε)={} fstπ(A(v , α∗))={A(v , α∗)} fstπ(ε#t)={t} fstπ(θ?)=fstπ(θ)

fstπ(θ#t)={(A(v , α∗), t ′) | A(v , α∗)∈fstπ(θ)} fstπ(θ1∨θ2 )=fstπ(θ1 ) ∪ fstπ(θ2 )

fstπ(π′?θ)=fstπ(θ) fstπ(θ1 ||θ2 )=fstπ(θ1 ) ∪ fstπ(θ2 )

fstπ(θ1 · θ2 )=

{
fstπ(θ1 ) ∪ fstπ(θ2 ) if δ(θ1 )=true

fstπ(θ1 ) if δ(θ1 )=false

Definition 8 (TimEffs Partial Derivative). Given any Φ=π ∧ θ, the partial deriva-
tive Dπ

h (θ) computes the effects for the left quotient h-1 (π ∧ θ), cf. Definition 1.

Dπ
h (⊥)=Dπ

h (ε)=False∧⊥ Dπ
h (A(v , α∗))=(π∧(h=A(v , α∗)))∧ε Dπ

h (θ?)=Dπ
h (θ)·θ?

Dπ
τ(π1 )(π

′?θ)=

{
π∧π′?θ if π1 6⇒π′

π∧θ if π1⇒π′
Dπ

h (θ1 ·θ2 )=

{
Dπ

h (θ1 )·θ2∨Dπ
h (θ2 ) if δπ(θ1 )=true

Dπ
h (θ1 )·θ2 if δπ(θ1 )=false

Dπ
(A(v,α∗),t)(θ) =

∨
{Dπ′

A(v,α∗)(θ
′) | (π′ ∧ θ′) ∈ Dπ

t (θ)}

Dπ
t (θ#t ′)=(π ∧ t+t ′′=t ′) ∧ θ#t ′′ (t ′′ is fresh) Dπ

h (θ1∨θ2 )=Dπ
h (θ1 ) ∨Dπ

h (θ2 )

Dπ
A(v,α∗)(θ#t)=

∨
{(π′∧(θ′#t)) | (π′∧θ′)∈Dπ

A(v,α∗)(θ)} Dπ
h (θ1 ||θ2 )=¯̄Dπ

h (θ1 )||¯̄Dπ
h (θ2 )

Notice that the derivatives of a parallel composition makes use of the Parallel

Derivative ¯̄Dπ
h (θ), defined as follows: ¯̄Dπ

h (θ)=

{
π∧θ if Dπ

h (π ∧ θ) = (False∧⊥)

Dπ
h (θ) otherwise

5.1 Rewriting Rules. Given the well-defined auxiliary functions above, we now
discuss the key rewriting rules that deployed in effects inclusion proofs.

Γ ` π ∧ ⊥ v Φ
[Bot-LHS]

Φ 6= π ∧ ⊥
Γ ` Φ 6v π ∧ ⊥ [Bot-RHS]

δπ1(θ1) ∧ ¬δπ2(θ2)

Γ ` π1 ∧ θ1 6v π2 ∧ θ2
[DISPROVE]

π1 ⇒ π2 fstπ1
(θ1 ) = {}

Γ ` π1 ∧ θ1 v π2 ∧ θ2
[PROVE]

7 SAT (π) stands for querying the Z3 theorem prover to check the satisfiability of π.



Automated Verification for Real-Time Systems 13

Axiom rules [Bot-LHS] and [Bot-RHS] are analogous to the standard proposi-
tional logic, ⊥ (referring to false) entails any effects, while no non-false effects
entails ⊥. [DISPROVE] is used to disprove the inclusions when the antecedent is
nullable, while the consequent is not nullable.

We use two rules to prove an inclusion: (i) [PROVE] is used when the antecedent
has no head; and (ii) [REOCCUR] proves an inclusion when there exist inclusion
hypotheses in the proof context Γ , which are able to soundly prove the current
goal. [UNFOLD] is the inductive step of unfolding the inclusions. The proof of the
original inclusion succeeds if all the derivative inclusions succeed.

(π1∧θ1 v π3∧θ3) ∈ Γ (π3∧θ3 v π4∧θ4) ∈ Γ (π4∧θ4 v π2∧θ2) ∈ Γ
Γ ` π1 ∧ θ1 v π2 ∧ θ2

[REOCCUR]

H=fstπ1
(θ1) Γ ′=Γ, (π1∧θ1 v π2∧θ2) ∀h∈H. (Γ ′ ` Dπ1

h (θ1) v Dπ2
h (θ2))

Γ ` π1 ∧ θ1 v π2 ∧ θ2
[UNFOLD]

Theorem 2 (Termination of the TRS). The TRS is terminating.

Proof. See the technical report [16].

Theorem 3 (Soundness of the TRS). Given an inclusion Φ1 v Φ2 , if the
TRS returns TRUE with a proof, then Φ1 v Φ2 is valid.

Proof. See the technical report [16].

6 Implementation and Evaluation

To show the feasibility, we prototype our automated verification system using
OCaml (∼5k LOC); and prove soundness for both the forward verifier and the
TRS. We set up two experiments to evaluate our implementation: i) function-
ality validation via verifying symbolic timed programs; and ii) comparison with
PAT [17] and Uppaal [3] using real-life Fischer’s mutual exclusion algorithm.
Experiments are done on a MacBook with a 2.6 GHz 6-Core Intel i7 processor.
The source code and the evaluation benchmark are openly accessible from [18].

6.1 . Experimental Results for Symbolic Timed Models. We manually
annotate TimEffs specifications for a set of synthetic examples (for about 54
programs), to test the main contributions, including: computing effects from
symbolic timed programs written in C t ; and the inclusion checking for TimEffs
with the parallel composition, block waiting operator and shared global variables.

Table 3 presents the evaluation results for another 16 C t programs8, and
the annotated temporal specifications are in a 1:1 ratio for succeeded/failed
cases. The table records: No., index of the program; LOC, lines of code; For-

ward(ms), effects computation time; #Prop(3), number of valid properties;
Avg-Prove(ms), average proving time for the valid properties; #Prop(7), num-
ber of invalid properties; Avg-Dis(ms), average disproving time for the invalid
properties; #AskZ3, number of querying Z3 through out the experiments.

8 All programs contain timed constructs, conditionals, and parallel compositions.
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Table 3. Experimental Results for Manually Constructed Synthetic Examples.

No. LOC Forward(ms) #Prop(3) Avg-Prove(ms) #Prop(7) Avg-Dis(ms) #AskZ3

1 26 0.006 5 52.379 5 21.31 77

2 37 43.955 5 83.374 5 52.165 188

3 44 32.654 5 52.524 5 33.444 104

4 72 202.181 5 82.922 5 55.971 229

5 98 42.706 7 149.345 7 60.325 396

6 134 403.617 7 160.932 7 292.304 940

7 133 51.492 7 17.901 7 47.643 118

8 173 57.114 7 40.772 7 30.977 128

9 182 872.995 9 252.123 9 113.838 1142

10 210 546.222 9 146.341 9 57.832 570

11 240 643.133 9 146.268 9 69.245 608

12 260 1032.31 9 242.699 9 123.054 928

13 265 12558.05 11 150.999 11 117.288 2465

14 286 12257.834 11 501.994 11 257.800 3090

15 287 1383.034 11 546.064 11 407.952 1489

16 337 49873.835 11 1863.901 11 954.996 15505

Observations: i) the proving/disproving time increases when the effect computa-
tion time increases because larger Forward(ms) indicates the higher complexity
w.r.t the timed constructs, which complicates the inclusion checking; ii) while
the number of querying Z3 per property (#AskZ3/(#Prop(3)+#Prop(7))) goes
up, the proving/disproving time goes up. Besides, we notice that iii) the disprov-
ing times for invalid properties are constantly lower than the proving process,
regardless of the program’s complexity, which is as expected in a TRS.

6.2 . Verifying Fischer’s mutual exclusion algorithm. As shown in Fig.
4, the data in columns PAT(s) and Uppaal(s) are drawn from prior work [19],
which indicate the time to prove Fischer’s mutual exclusion w.r.t the number of
processes (#Proc) in PAT and Uppaal respectively. For our system, based on the
implementation presented in Fig. 5, we are able to prove the mutual exclusion
properties, given the arithmetic constraint d<e. Besides, the system disproves
mutual exclusion when d≤e. We record the proving (Prove(s)) and disproving
(Disprove(s)) time and their number of uniquely querying Z3 (#AskZ3-u).

Table 4. Comparison with PAT via verifying Fischer’s mutual exclusion algorithm

#Proc Prove(s) #AskZ3-u Disprove(s) #AskZ3-u PAT(s) Uppaal(s)

2 0.09 31 0.110 37 ≤0.05 ≤0.09
3 0.21 35 0.093 42 ≤0.05 ≤0.09
4 0.46 63 0.120 47 0.05 0.09
5 25.0 84 0.128 52 0.15 0.19

Observations: i) automata-based model checkers (both PAT and Uppaal) are
vastly efficient when given concrete values for constants d and e; however ii) our
proposal is able to symbolically prove the algorithm by only providing the con-
straints of d and e, which cannot be achieved by existing model checkers; ii) our
verification time largely depends on the number of querying Z3, which is opti-
mized in our implementation by keeping a table for already queried constraints.
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6.3 . Case Study: Prove it when Reoccur. Termination of TRS is guaran-
teed because the set of derivatives to be considered is finite, and possible cycles
are detected using memorization [14], demonstrated in Table 5. In step 2○, in
order to eliminate the first event B, A?#tR has to be reduced to ε, therefore the
RHS time constraint has been strengthened to tR=0. Looking at the sub-tree (I ),
in step 5○, tL and tR are split into tL1+tL2 and tR1+tR2 . Then in step 6○, A#tL1

together with A#tR1 are eliminated, unifying tL1 and tR1 by adding the side
constraint tL1=tR1. In step 8○, we observe the proposition is isomorphic with one
of the the previous step, marked using (‡). Hence we apply the rule [REOCCUR]
to prove it with a succeed side constraints entailment.

Table 5. The reoccurrence proving example. (I ) is the left hand side sub-tree of the
main rewriting proof tree.

(I )

tL<3∧(A?#tL)·B v tR<4∧(A?#tR)·B

4○ [PROVE]
True ∧ ε v tR=0 ∧ ε

3○ [Normal]
True ∧ �B v tR=0 ∧ ��ε · B

2○ [UNFOLD]
True ∧ B v tR<4 ∧ (A?#tR) · B

1○ [OR-LHS]
(tL<3 ∧ (A?#tL) · B) ∨ (True ∧ B) v tR<4 ∧ (A?#tR) · B

(I ) :
tL<3∧tL1+tL2=tL∧tR=tR1+tR2∧tL1=tR1∧tL2=tR2⇒tR<4

8○ [REOCCUR]
tL<3 ∧ (A?#tL2) · B v tR<4 ∧ (A?#tR2) · B (‡)

7○ [UNFOLD]
tL<3∧ ���A#tL1 · A?#tL2·BvtR<4∧ ���A#tR1· A?#tR2·B

6○ [UNFOLD] πu:tL
1=tR1

tL<3∧(A#tL1· A?#tL2)·BvtR<4∧(A#tR1· A?#tR2)·B
5○ [SPLIT]tL1+tL2=tL∧tR1+tR2=tR

tL<3 ∧ (A?#tL) · B v tR<4 ∧ (A?#tR) · B (‡)

6.4 . Discussion. Our implementation is the first that proves the inclusion of
symbolic TAs, which is considered significant because it overcomes the following
main limitations of traditional timed model checking: i) TAs cannot be used to
specify/verify incompletely specified systems (i.e., whose timing constants have
yet to be known) and hence cannot be used in early design phases; ii) verifying a
system with a set of timing constants usually requires enumerating all of them if
they are supposed to be integer-valued; iii) TAs cannot be used to verify systems
with timing constants to be taken in a real-valued dense interval.

7 Related Work

7.1 . Verification Framework. This work draws the most similarities to [20],
which also deploys a forward verifier and a TRS for extended regular expressions.
The differences are: i) [20] targets general-purpose sequential programs without
shared variables, whereas this work targets time-critical programs with the pres-
ence of concurrency and global shared states; ii) the dependent values in [20]
denote the number of repetitions of a trace, whereas in this work, they abstract
the real-time bounds; iii) in this work, the TRS supports inclusion checking for
the block waiting operator π? and the concurrent composition ||. These are es-
sential in timed verification (or, more generally, for distributed systems), which
are not supported in [20] or any other TRS-related works.
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7.2 . Specifications and Real-Time Verification. Apart from compositional
modelling for real-time systems based on timed-process algebras, such as Timed
CSP [8] and CCS+Time [21], there have been a number of translation-based
approaches on building verification support for timed-process algebras. For ex-
ample, in [8], Timed CSP is translated to TAs (TAs) so that the model checker
Uppaal [3] can be applied. On the other hand, all the translation-based ap-
proaches share the common problem: the overhead introduced by the complex
translation makes it particularly inefficient when disproving properties. We are
of the opinion that in that the goal of verifying real-time systems, in partic-
ular safety-critical systems is to check logical temporal properties, which can
be done without constructing the whole reachability graph or the full power of
model-checking. We consider our approach is simpler as it is based directly on
constraint-solving techniques and can be fairly efficient in verifying systems con-
sisting of many components as it avoids to explore the whole state-space [20,22].

This work draws similarities to Real-Time Maude [23], which complements
timed automata with more expressive object-oriented specifications.

7.3 . Clock Manipulation and Zone-based Bisimulation. The concept
of implicit clocks has also been used in time Petri nets, and implemented in a
several model checking engines, e.g., [24]. On the other hand, to make model
checking more efficient with explicit clocks, [25–28] work on dynamically delet-
ing or merging clocks. Our work also draw connections with region/zone-based
bisimulations [29], which is broadly used in reasoning timed automata.

8 Conclusion

This work provides an alternative approach for verifying real-time systems, where
temporal behaviors are reasoned at the source level, and the specification expres-
siveness goes beyond traditional Timed Automata. We define the novel effects
logic TimEffs, to capture real-time behavioral patterns and temporal properties.
We demonstrate how to build axiomatic semantics (or rather an effects sys-
tem) for C t via timed-trace processing functions. We use this semantic model
to enable a Hoare-style forward verifier, which computes the program effects
constructively. We present an effects inclusion checker – the TRS – to efficiently
prove the annotated temporal properties. We prototype the verification system
and show its feasibility. To the best of our knowledge, our work proposes the
first algebraic TRS for solving inclusion relations between timed specifications.

Limitations And Future Work. Our TRS is incomplete, meaning there exist
valid inclusions which will be disproved in our system. That is mainly because
of insufficient unification in favour of achieving automation. We also foresee the
possibilities of adding other logics into our existing trace-based temporal logic,
such as separation logic for verifying heap-manipulating distributed programs.
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