
Inferring Incorrectness Specifications for
Object-Oriented Programs

Wenhua Li1, Quang Loc Le2, Yahui Song1, and Wei-Ngan Chin1

1 National University of Singapore, Singapore
2 University College London, United Kingdom

Abstract. Incorrectness logic (IL) based on under-approximation is ef-
fective at finding real program bugs. The prior work utilises bi-abductive
specification inference mechanism to infer IL specifications for analysing
large-scale C projects. However, this approach does not work well with
object-oriented (OO) programs because it does not account for class
inheritance and method overriding. In our work, we present an IL speci-
fication inference system that tackles these issues. At its core, we encode
type information in our bi-abductive reasoning and propagate type con-
straints throughout the analysis. The direct benefit is that we can effi-
ciently identify bugs caused by improper usage of the casting operator,
which cannot be handled by the existing specification inference. Mean-
while, our system can reduce false positives while finding more true bugs
because of not losing OO-type information. Furthermore, we model dy-
namic dispatching calls by inferring dynamic specifications, where the
possible types of the calling object at runtime are bounded by the type
constraints. We prototype our system in ILoop and evaluate it using
real-world projects. Experimental results show that it finds 400% more
class-cast-exceptions compared with Error Prone and improves the pre-
cision of finding null-pointer-exceptions by 27.0% compared with Pulse.

1 Introduction

Incorrectness Logic (IL) [31], as a dual to Hoare logic (HL), is an effective and
principled approach for proving the presence of bugs. A recent work [20] im-
plements a tool called Pulse-X to infer IL specifications within the Meta/Infer
framework and aims at real bug detection for large C-based projects. In Pulse-X,
IL with its extension via Incorrectness Separation Logic (ISL) are used together
with bi-abduction [12] to infer specifications automatically. Pulse-X has been
shown to be effective in finding bugs in real-world projects such as OpenSSL.

The current IL bi-abductive inference mechanism [20] only associates every
variable with its declared type during the analysis. However, this is inadequate
for modelling OO programs. In OO programming, types form class hierarchies
and declared types encompass themselves and all their subclasses. Consequently,
a method could accept multiple types during the real execution. These charac-
teristics create challenges for the existing inference mechanism.

Firstly, it cannot handle the casting operation, which is widely used in OO
programs. The casting operation is in the form of (C ) e, which casts the source
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type of the value by evaluating expression e to type C . Casting operations can
cause system failures, i.e., class-cast-exception (CCE), at run-time when the
source type is not a subtype of C . Research [14,19,24,30] has shown that the
CCE stands as one of the most pervasive bugs in OO programs. Unfortunately,
the current approach could not analyse casting operations as it cannot recognise
object type possibilities. In addition, a lack of OO-type information leads to false
positives, as some bugs will only occur if some type constraints are satisfied.
However, as variables are type-insensitive in [20], it may report infeasible bugs.

Furthermore, because this mechanism uses fixed types, each method call,
e.g., x.mn(ȳ), is considered to be statically dispatched. Then, the analysis could
be imprecise. Suppose the type declared for x is an interface; it could not find
a specification as mn does not have an implementation in the interface. If the
declared type of x is a normal class, it loses precision due to the ignorance of sub-
types and method overriding in OO programs. Considering these unsolved issues
are crucial in OO programs, the current inference approach must be advanced.

Incorrectness Logic and Bi-abduction. [p] S [ϵ:q] denotes an IL triple. Here,
ϵ∈{ok , er} captures symbolic traces of successful or error outcomes. Intuitively,
an IL triple is valid if every program state satisfying the postcondition is reach-
able from some program states satisfying the precondition. A key feature of IL
is that it allows dropping execution paths while ensuring all described paths are
true in actual executions. Hence, an error postcondition [er: ...] stands for true
bugs. A bi-abduction problem [12] p ∗ m ⊢bi q ∗ f is to abduce a missing for-
mula m, which is necessary to execute a command and calculate an unchanged
frame f . Bi-abductive reasoning can generate HL specifications automatically.
As IL is dual to HL, Pulse-X adapts bi-abduction to infer IL specifications due
to the flipped consequence rule. Specifically, the IL bi-abduction problem is
q ∗ f ⊢bi p ∗m where m is inferred via frame calculation. Pulse-X analyses each
method starting from the typical formula emp ∧ true, while in our system, the
initial condition will record all declared type information. Our system builds up
and propagates type constraints throughout the reasoning, accommodating the
bug finding for CCEs and recording the possible types for dynamic dispatching
in real executions.

Errors in OO Programs and Error Reporting. In this work, we target
CCEs and null-pointer-exceptions (NPEs), which occur when trying to access
a null pointer that does not point to an object. For NPEs, not all the possible
errors are of programmers’ interest. For example, the method foo(Aa){a.mn()}
can trigger an NPE when null is given as its input. The programmer may reason
that a will rarely be null and decide to ignore this possible NPE.

To systematically decide if an error is worth reporting and reduce false posi-
tives, Le et al. [20] defined manifest bugs, which persistently occur regardless of
the input values, and latent bugs which only occur for some input values. Follow-
ing the convention, in this work, we also target manifest bugs for NPEs. Pulse-X
may generate multiple specifications for one analysed method. Each specifica-
tion is associated with one path of the program. However, to determine manifest
bugs, they examine specifications individually while ignoring the bugs that exist
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in multiple paths. We propose a merging mechanism which generalises the re-
porting strategies to discover more true bugs. In addition, dynamic dispatching
calls introduce a large set of paths, as each possible type leads to a different
set of paths, which worsens the path explosion problem. The proposed merging
mechanism can mitigate the problem by combining compatible specifications.
The mechanism reduces the path space without sacrificing path information.
On the other hand, we argue that latent CCEs are also worth reporting. For
example, the programmers may not be aware of the entire class hierarchy and
ignore some type possibilities for input objects. Some inputs are fine, but those
ignored objects could be dangerous, especially when the code is re-used or used
externally. Hence, we further relax the reporting criteria which covers a larger
set of interesting bugs. Our contributions are:

– We propose an IL specification inference system for OO programs. Our system
is type-sensitive, such that it can effectively reason about OO features and find
bugs which cannot be handled by the existing inference system.

– We propose bug reporting criterion for both NPEs and CCEs. The NPEs
reporting criteria is a generalisation of the existing work via merging and the
merging mechanism can also mitigate the path explosion issue.

– We implement the inference mechanism in a tool called ILoop. Our experi-
mental results show that our tool outperforms the state-of-the-art tools. The
source code of the ILoop is available from [8].

2 Motivating Examples

Our motivation examples demonstrate that our approach can effectively detect
CCEs, and increase the precision of the existing static analysis for OO programs.

2.1 Detecting Class-Cast-Exceptions

Fig. 1 shows a possible casting error found by ILoop. The input of this method
is a COSBase object. In the if branch, the developer uses an instanceof op-
erator to guard the casting (COSObject) o. However, in the else branch, the
developer directly casts the object o to COSDictionary , which may cause a run-
time exception as there exist classes that are neither subtypes of COSObject nor
COSDictionary . This issue has been existing for more than ten years, and fixed
by the developer recently (June, 2024). To identify this bug, ILoop starts with an
initial program state, ϕ0 =(ty(o)≺:COSBase), meaning that the input type of
o is COSBase or COSBase’s subclasses. At line 4, ILoop extends the state with
the type constraint: ϕ1 =(ty(o) ̸≺:COSObject). When analysing line 4, ILoop

1 private COSDictionary toDictionary(COSBase o){
2 if (o instanceof COSObject){
3 return (COSDictionary)(( COSObject)o).getObject ();}
4 else{return (COSDictionary)o;}} //may cause a run -time error

Fig. 1. A Casting Error Found in an Open-Source Project Pdfbox [6]
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explores the possibility of CCEs, which is when ϕ2 =(ty(o)̸≺:COSDictionary).
Since ϕ2 does not contradict to the current state, ILoop infers an error specifi-
cation with a precondition containing ϕ0 ∧ϕ1 ∧ϕ2 .

2.2 Increasing Bug-finding Precision

ILoop is more accurate than the state-of-the-art tool Pulse, the commercial
version of Pulse-X, by reducing false positives while finding more true positives.

Reduce False Positives. As shown in Fig. 2, Pulse reports a bug at line 2,
which calls the method defined at line 4 by passing null as the second argument.
As the second formal argument, object icon is dereferenced at line 7 to access its
method getImage(); and if icon is null , there is an NPE. Hence, Pulse reports
this error.

However, as this method call is under an instanceof checking and null is not
an instance of any class, icon’s value will never be null at line 7. Therefore,
there is no NPE. ILoop avoids such false positives by inferring specifications
containing precise type constraints. The precondition inferred for entering the
if branch at line 7 contains a condition ty(icon)≺:ImageIcon. Then, ILoop finds
that the method call at line 2 does not take this precondition as a valid call since
icon = null. Thus, ILoop does not report any NPEs here.

1 public ErrorDialog(JComponent owner , Throwable t){
2 this(owner , null , t); } // this is a false positive NPE
3

4 public ErrorDialog(JComponent owner , Icon icon , Throwable t){
5 ...
6 if (icon instanceof ImageIcon){
7 setIconImage ((( ImageIcon) icon).getImage ());}
8 else {...}}

Fig. 2. A (Simplified) False Positive Reported by Pulse [4]

Find True Positives. Fig. 3 presents a buggy program from Infer’s test repos-
itory [17]. Unfortunately, this bug has existed in this repository for several years
but still cannot be found by its toolchain. There are two classes declared in this
example where B is a subclass of A. B overrides the method foo() such that
A.foo() returns a new Object instance, while B .foo() returns null . The method
dyn mn takes the object o as the input, and o could be either an instance of A
or an instance of B . The method executes normally if it has type A but throws
an NPE if it has type B . Pulse could not detect such bugs as it only analyses
the case where o is type A and fails to consider the other possible type B . In

1 class A {Object foo() {return new Object ();}}
2 class B extends A { @Override Object foo() {return null ;}}
3 void dyn_mn(A o) {o.foo().toString ();}
4 void buggy(B b) {dyn_mn(b);} // this is a true bug

Fig. 3. A True NPE in Infer’s Test Repository
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addition, this bug becomes manifest in method buggy at line 4 as it calls method
dyn mn by always passing a B type instance as an input. However, Pulse does
not support the reasoning for the dynamic dispatching call shown in the exam-
ple, i.e., the specification of the overriding method in the subclass is missing. As
such, it could not derive the error specification for buggy . This example high-
lights the need for a systematic method to catch and report such bugs in OO
programs.

In our approach, ILoop infers the static specifications for both A.foo() and
B .foo() according to their implementations, respectively. Meanwhile, ILoop com-
poses a dynamic specification for A : foo() from the earlier inferred static speci-
fications of both A and B. The notation A : foo() means that foo is dynamically
dispatched. ILoop utilises the dynamic specification to cover the behaviour when
o is type B in dyn mn and captures the missing bug in buggy .

3 Target Language and Specification Language

P :: = cdef ; cdef :: = class C1 extends C2 {t f ; meth}
τ :: = int | bool | void t :: = C | τ

meth :: = t mn (t x) {S} v :: = const | x
S :: = skip | e | t x ;S | S ;S | S + S | S∗

e :: = v | x :=e | y := x .f | x .f :=y | error() | new C (x ) |
x .mn(y) | x instanceof C | (C ) x | assume(b)

Fig. 4. A Core Object-Oriented Language

Fig. 4 presents our target OO language, which is call by value and uses single
inheritance. The entire class hierarchies of a program are constructed via extends
keyword. Object is an implicit superclass of all classes; x, y... range over variables.
The const represents the constant values. Following the encoding convention
[31,20], we represent conditionals as (assume(b);S1 )+(assume(¬b);S2 ) where b
is a Boolean value and + is a non-deterministic choice between two statements;
and while is encoded as (assume(b);S )∗; assume(¬b) where ∗ is the Kleene star
iteration. The semantics of the core language can be found in our technical report
[27].

Fig. 5 presents the syntax of the specification language, where κ1∗κ2 presents
two non-overlapping heaps via separation conjunction ∗; x.f 7→e means the field
f of x points to e and x :C means the run-time type of x stored in the heap is
C. We use a simplified notation x 7→C⟨f̄ : ē⟩ to denote a constructed heap object.
x 7→C⟨f̄ : ē⟩ is a point-to predicate where the object x has the exact type C and
the fields f̄ from C points to ē. We may shorten it to x 7→C⟨f̄⟩ for simplicity in
some following sections. By default, we know which class a field f belongs to.

p, q, f,m, F :: = (κ∧ϕ) | p ∨ p | ∃x.p
κ :: = emp | x.f 7→ e | x : C | x7→C⟨f̄ : ē⟩ | κ1 ∗ κ2

ϕ :: = true | false | x=e | x<e | ϕ1 ∧ ϕ2 | ϕ1∨ϕ2 | ¬ϕ | ϕ1⇒ϕ2 |
C1=C2 | C1≺C2 | ty(x )=C | ty(x )≺C | ty(x )∈{C1, . . . , Cn}

Fig. 5. An Assertion Logic for OOP
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Lastly, ϕ stands for pure arithmetic constraints. In contrast to the prior works
[35,20], we do not have the notation x ̸7→ called “negative heap”, as we do not
have explicit memory management, such as free() to de-allocate objects from
heaps. In addition, we have a set of extra terms to constrain the types in our
pure logic. The type of an object is immutable throughout its lifetime. We can
use those terms to constrain the allocated type. For example, ty(x)=C means
the run-time type of x is exactly C while ty(x)≺:C (ty(x)=C ∨ ty(x) ≺ C) can
be used when x’s type is either C or its subclasses.

4 Specification Inference

We semantically define IL triples [31] via program transitions. A configuration is
a pair (S , σ) where S is a program and σ is a program state, i.e., the valuation of
both memory stacks and heaps. A program transition is a binary relation ; on
configurations. Relation (S , σ); (S ′, σ′) holds if the execution of the statement
in the configuration (S , σ) results in the new configuration (S ′, σ′). We define;∗,
the reflexive-transitive closure of ;, to capture finite executions. We assume all
terminating executions end at a skip statement. We use σ ∈ JpK to denote that
the program state σ satisfy the assertion p. Finally, Tsp ⊨ [p]S [ϵ:q] denotes a
valid IL triple, where Tsp is a context storing the specifications for the analyzed
methods. Formally,

Tsp ⊨ [p]S [ϵ:q ] iff ∀σ. σ ∈ q , ∃σ′. σ′ ∈ p s.t . (S , σ′);∗(skip, σ)
with the specification context Tsp and ϵ∈{ok , er}.

4.1 IL Triples For OO Statements and Type Constraint Propagation

Fig. 6 presents a set of valid IL triples [26] for primitive OO program statements.
As these triples hold without context Tsp, we omit it here. Rules Skip, Read

and Write are standard. Rule Assume allows us to back-propagate the Boolean
expression to the precondition as a path condition. There are three possibilities
for the instanceof operation. Rule InsNull states that null is not an instance of

⊨ [emp]skip[ok: emp] Skip ⊨ [x.f 7→e1 ∧ y=e2] y:=x.f [ok: x.f 7→e1 ∧ y=e1] Read

⊨ [x=null ] y:=x.f [er: x=null ] NullRead ⊨ [x.f 7→e] x.f := y [ok: x.f 7→y] Write

⊨ [x=null ] x.f :=y [er: x=null ] NullWrite ⊨ [emp∧b] assume(b) [ok: emp∧b] Assume

⊨ [emp] error() [er: emp] Error ⊨ [x=null ]x instanceof C [ok: x=null∧¬res] InsNull

⊨ [x̸=null ∧ ty(x)≺:C ] x instanceof C [ok: x ̸=null ∧ ty(x)≺:C ∧ res] InsT

⊨ [x̸=null ∧ ty(x) ̸≺:C ] x instanceof C [ok: x ̸=null ∧ ty(x) ̸≺:C ∧ ¬res] InsF

⊨ [x=null] (C ) x [ok: x=null ∧ res=x] CastNull

⊨ [x̸=null ∧ ty(x)≺:C ] (C ) x [ok: x ̸=null ∧ ty(x)≺:C ∧ res=x] CastOk

⊨ [x̸=null ∧ ty(x) ̸≺:C ] (C ) x [er: x̸=null ∧ ty(x) ̸≺:C ] CastEr

Fig. 6. Primitive IL Triples For OO Statements
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1 public synchronized boolean equals (final Object other) {

2 [...ty(other)≺:Object ∧ ty(other)≺:AbsHis ∧ ty(other) ̸≺:DblHis ]

3 if (other instanceof AbsHis) {

4 [ok: ...ty(other)≺:Object ∧ ty(other)≺:AbsHis ∧ ty(other) ̸≺:DblHis ]

5 DblHis otherHis = (DblHis) other;
6 [er: ...ty(other)≺:Object ∧ ty(other)≺:AbsHis ∧ ty(other) ̸≺:DblHis]

Fig. 7. Finding a CCE [7], via Type Constraint Propagation

any class. If x is allocated, it can either be or not be an instance of C , denoted
by rules InsT and InsF. Similarly, there are three possibilities for casting, and
one leads to CCEs. We use the default res in poststate q to denote the result
being returned from an expression e in [p]e[ϵ:q].

Based on primitive IL triples, specification inference allows us to generate
specifications for bigger code blocks [20,37], which consist of primitive state-
ments. We show that such a mechanism can be applied to propagate type con-
straints according to program statements, which are critical for analysing OO
programs. For example, statement if (x instanceof C ) ... else ... results two pos-
sible specifications: ty(x)≺:C for the if branch and ty(x) ̸≺:C for the else branch.
Type constraints indicate the possible types for an object at run-time.

The example in Fig. 7 is taken from an open-source project HdrHistogram
and fixed by the developer [7]. For simplicity, we only show the typing part
of the inferred specification. The initial state before the if statement is ϕ0 =
(ty(other)≺:Object), obtained from the method signature. The (boxed) con-
straint ϕ1 =(ty(other)≺:AbsHis) (according to the if condition) is back prop-
agated to form the precondition for entering the if branch, i.e., ϕ0 ∧ϕ1. For the
casting operation at line 5, ILoop infers ϕ2 =(ty(other) ̸≺:DblHis) ( highlighted )
as the missing formula which leads to an error postcondition. As the accumulated
type constraint is satisfiable when reaching the post, i.e., (ϕ0 ∧ϕ1 ∧ϕ2) ̸= false,
it indicates that this error is on a feasible path. The states at line 2 and line 6
form an error specification for this method. In fact, AbsHis and DblHis are two
unrelated classes, and this bug was caused by a typo from the programmer.

4.2 Inference Relations

We now discuss how to automatically achieve IL specification inference for OO
programs. Given a statement S , we use the following relation Tsp ⊢ [p]?[m] S [ϵ: q]
to infer a missing formula m which is necessary to execute S and computes
the corresponding postcondition [ϵ: q] with a given precondition p. Tsp is the
specification table which initially contains the primitive rules in Fig. 6. For each
analysed method, its inferred specifications are stored in Tsp, and used to further
infer the specifications for the rest of the methods. Instead of using a standard
emp ∧ true symbolic heap [12,20] when analysing a new method, the inference
is initialized with a precondition p that records the declared type for each input
object. For example, given a method definition of class C: t0 mn (args) {S}, the
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precondition for reasoning S is initialized as follows:

p = (
∧

(C ′
i xi )∈ args

(xi=null ∨ ty(xi)≺:C ′)) ∧ ty(this)=C

The rest of the inference relations are presented in Fig. 8. The system per-
forms forward symbolic executions. During the inference, the bi-abduction obli-
gations in the form of q ∗ f ⊢bi p ∗m are solved by the approaches in [12], where
the missing resource m is inferred through frame calculation, and the anti-frame
f carried is abduced. ASSIGN-VAR performs standard Floyd’s forward assign-
ment rule. LOCAL picks fresh variables to represent locally declared variables in
specifications. The “default value(vt)” means the default value when a variable
of type t is declared. CHOICE rule is design for non-deterministic choice + which
paths could be split. SEQ performs the sequential composition. In SEQ2, mod(S)
returns the set of variables modified in the program S and fv(f) is the set of free
variables in formula f . The UNROLLING rule is designed Kleene star iterations
S∗ which allows it to unroll non-deterministically. In this work, we use upper-

ASSIGN−VAR

vars =(
∧

∀yi.yi∈pvar(e)

yi = ei) ∧ x=x′

vars ∗ f ⊢bi p ∗m
q=∃x′.(m ∗ p)[x′/x] ∧ x=e[x′/x]

Tsp ⊢ [p]?[m] x:=e [ok : q]

LOCAL

fresh(o) default value(vt)
Tsp ⊢ [p ∧ o= vt]?[m] S[o/x] [ϵ: q]

Tsp ⊢ [p]?[m] t x;S [ϵ:∃o. q]

VAL−VAR

q= p ∧ res = v

Tsp ⊢ [p]?[m] v [ok : q]

CHOICE1

Tsp ⊢ [p]?[m] S1 [ϵ: q]

Tsp ⊢ [p]?[m] S1 + S2 [ϵ: q]

CHOICE2

Tsp ⊢ [p]?[m] S2 [ϵ: q]

Tsp ⊢ [p]?[m] S1 + S2 [ϵ: q]

SEQ1

Tsp ⊢ [p]?[m] S1 [er : q]

Tsp ⊢ [p]?[m] S1;S2 [er : q]

SEQ2

Tsp ⊢ [p1]?[m1] S1 [ok : q1]
Tsp ⊢ [p2]?[m2] S2 [ϵ: :q2]
(p2 ∗m2) ∗ f ⊢bi q1 ∗m

mod(S1) ∩ fv(m) = mod(S2) ∩ fv(f) = ∅
Tsp ⊢ [p1]?[m1 ∗m] S1;S2 [ϵ: q2 ∗ f ]

CONSEQUENCE

p′ ⇒ p Tsp ⊢ [p′]?[m] S [ϵ: q′] q ⇒ q′

Tsp ⊢ [p]?[m] S [ϵ: q]

FRAME

Tsp ⊢ [p]?[m] S [ϵ: q] mod(S) ∩ fv(f) = ∅
Tsp ⊢ [p ∗ f ]?[m] S [ϵ: q ∗ f ]

UNROLLING

Tsp ⊢ [p]?[m] skip+ (S;S∗) [ϵ: q]

Tsp ⊢ [p]?[m] S∗ [ϵ: q]

ERR−CALL

m = (x = null)

Tsp ⊢ [p]?[m] x.mn [er : p]

CALL-STATIC

ty constraints(x) =⇒ ty(x)=C
ST (C .mn(w̄)) = ([p′] [ϵ: q′]) ∈ Tsp

p′[x/this, ȳ/w̄] ∗ f ⊢bi p ∗m
q = q′[x/this, ȳ/w̄]

Tsp ⊢ [p]?[m] x.mn(ȳ) [ϵ: q ∗ f ]

CALL-DYNAMIC

DY (C :mn(w̄)) ∈ Tsp

DY (C :mn(w̄)) ∧ ty constraints(x) = [p′] [ϵ: q′]
p′[x/this, ȳ/w̄] ∗ f ⊢bi p ∗m

q = q′[x/this, ȳ/w̄]

Tsp ⊢ [p]?[m] x.mn(ȳ) [ϵ: q ∗ f ]

Fig. 8. Specification Inference Relations
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bounded loop unrolling. The inference process terminates once it reaches an er
postcondition.

Method Calls. There are two kinds of calls: CALL-STATIC and CALL-DYNAMIC

are for static and dynamic calls, respectively. In our language, both the method
calls are in the form of x.mn(ȳ) (we omit the arguments and use x.mn for sim-
plicity). We use ty constraints(x ) to denote the set of all type assertions of
x in the pre-state formula. We say that this call can be statically determined
if there is only one type possibility for x. For example, x is locally initialized
by new C (...), then ty(x)=C. In this case, we use the static specification for
this call. Static specifications are directly inferred through the inference rela-
tions for each method by analysing its concrete implementation. We store the
inferred specifications in Tsp and can be retrieved by ST (C.mn). Note that we
use CALL−STATIC to process the primitive statements shown in Fig. 6.

Dynamic Specifications. On the other hand, if the type of x is not statically
determined, x.mn is dynamically dispatched. We use C.mn for the mn imple-
mentation in class C, and C :mn to denote the set of mn implementations in
C and its subclasses. Specifications for such C :mn are dynamic specifications,
denoted by DY (C :mn). A natural way to derive dynamic specifications is to
collect the static specifications of mn in all C ′, where C ′≺:C. Formally,

Definition 1. Given class C and its subclasses, let C :mn be the set of im-
plementations of mn in these classes. The dynamic specification, denoted by
DY (C :mn), is defined as follows:

DY (C :mn) =
∧

∀Ci≺:C

ST (Ci .mn).

The derived dynamic specifications will also be stored in Tsp. To find a cor-
rect dynamic specification for a dynamically dispatched call x.mn, we need to
follow these steps: 1) Find the least positive type constraint of x (we call a type
constraint ty(x)≺:C, ty(x) ̸≺:C as positive constraint and negative constraint,
respectively). Let it be ty(x)≺:Cl. By least positive type constraint, we mean
that Cl is not the superclass of any other C in the other positive type con-
straints; 2) Find DY (Cl :mn); 3) Trim DY (Cl :mn) by removing specifications
of infeasible types according to the negative type constraints. Examples can be
found in [27].

Note that constructors are special methods that only require static specifi-
cations. When analysing a constructor C(...), the initial precondition p contains
an allocated heap object (all uninitialized fields are null at the beginning) with
the exact type ty(...)=C . Upon an ok termination, its reference is implicitly
returned. We define the soundness of our inference mechanism in Theorem 1.

Theorem 1 (Soundness of the Inference Relations). For all Tsp, p,M, S, ϵ, q,
if the inference relations conclude that Tsp ⊢ [p]?[M ] S [ϵ: q],
then Tsp |= [p ∗M ]S [ϵ: q].
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5 Bug Reporting

We aim to create a practical analyser with low false positives and high true
positives. This section outlines our efforts to achieve this for OO programs.

5.1 Merging

Prior work [20] defines manifest bugs and latent bugs. In a nutshell, latent bugs
are context-dependent, which will not always occur. In contrast, manifest bugs
occur regardless of the calling context and should be reported to the user. In
particular, to find manifest bugs, the previous tool classifies an er triple as
manifest if its precondition is emp ∧ true or relaxed-manifest if its precondition
contains heap-allocated variables without any pure constraints. Otherwise, it
is classified as a latent bug. However, this approach only reports a subset of
manifest bugs as they examine specifications individually and hence may miss
manifest bugs amongst multiple paths. We show such an example in Fig. 9,
where class B extends class A, and two branches are rejoining at the error()
statement. Hence, the error occurs regardless of the type of the input x.

1 void goo(A x) {
2 if (x instanceof B){skip;}
3 else {skip;}
4 error();}

Fig. 9. A Manifest Bug

We may infer two specifications for
each branch separately. The error oc-
curs in both the if branch and the else
branch. However, using the previous ap-
proach, we will find that the inferred
specifications contain path conditions
ty(x)≺:B and ty(x) ̸≺:B, respectively.
Therefore, we need to classify the triples in both branches as latent bugs and
not report them to the user. To reduce such false negatives, we propose a merg-
ing mechanism which can join the preconditions of the specifications for the two
branches so that this bug can be classified as a manifest bug.

On the other hand, the construction of dynamic specifications requires cap-
turing specifications from multiple classes, which leads to path explosion for
method calls. An under-approximating analyser will drop excessive specifications
once the limit is reached. Although sacrificing precision, path dropping helps
achieve scalability. Our merging mechanism can combine static specifications to
form a more concise dynamic specification without losing path information. By
doing this, we can slow down the path growth. Therefore, we enhance analysis
precision via merging from two perspectives: 1) merging preconditions from er-
ror specifications to find more true bugs; and 2) merging static specifications to
form dynamic specifications and slow down the path dropping.

Merging Mechanism We first defined c-hierarchy predicate in Definition 2 to
model the class hierarchy in OO programs. Each c-hierarchy predicate has a tree-
like structure where T is its root (superclass) with some subtrees (subclasses).
A c-hierarchy predicate can model the full/partial class inheritance.

Definition 2 (C-hierarchy Predicate). A c-hierarchy predicate is a disjunc-
tive set of objects in the following form:

D := ∅ | T (f̄ , D̄)
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A non-empty c-hierarchy predicate pointed by x is defined as follows:

x 7→ T (f̄ , D̄)
def
= x 7→ T ⟨f̄⟩ ∨

∨
Ti(f̄i,D̄i)∈ D̄

x 7→ Ti(f̄++f̄i, D̄i)

Recall that x 7→ T ⟨f̄⟩ indicates that x points to a heap object with exact type
T . For T (f̄ , D̄), T is the superclass name, f̄ are the field mappings from T , and
D̄ is the predicates of some other classes directly extending T . The notation ++ is
the appending operator. The subclasses (e.g.,Di) in a c-hierarchy predicate must
always maintain the same state for field mappings inherited from the superclass
(e.g., T ). For example, x 7→ T1(1, {T2(), T3(2)}) means x 7→ T1⟨1⟩ ∨ x 7→ T2⟨1⟩ ∨
x 7→ T3⟨1, 2⟩. A well-formed c-hierarchy predicate should respect the original
class hierarchy from the program. Specifically, one c-hierarchy predicate must
form a connected subgraph of the class hierarchy.

S ≺d T
var 7→ S(f̄T ++f̄S , D̄S) ∗ F ∗ F ′ ∨ var 7→ T (f̄T , D̄T ) ∗ F ∗ F@S̄′

var 7→ T (f̄T , D̄T ++S(f̄S , D̄S)) ∗ F ∗ F@S̄′ ∗ F ′
@S

(Merging)

This rule merges two formulae where var points to either a subclass or superclass
c-hierarchy predicate, where S ≺d T means T is the direct superclass of S. The
formula for the subclass S may contain an extra frame F ′ when var points to
a subclass instance (e.g., the objects pointed by extension fields of subclasses).
We tag this extra frame as F ′

@S to denote that F ′ is exclusively owned by the
S c-hierarchy predicate after merging. Similarly, the formula for the superclass
T may have already merged with some other direct subclasses S̄′. Hence, it
may contain some other tagged frames F@S̄′ . These tagged frames will remain
unchanged.

Note that the OO method’s specifications will include this object, which
denotes the current object. We merge two specifications from the superclass
and the subclass using the above Merging rule for both pre and post by replac-
ing var with this. This merging rule only merges formulae with the same F .

1 class A {
2 int val;
3 void set(int x){
4 this.val = x;}}
5

6 class DblA extends A{
7 int bak;
8 void set(int x){
9 this.bak=this.val;

10 this.val = x; }}
11

12 class C extends A {}

Fig. 10. A Merging Example

In other words, we only merge the superclass and
subclass specifications under the same path con-
dition. We keep the specifications separate if the
pre or post cannot be merged.

Merging makes the dynamic specification con-
cise by simplifying a disjunctive form P1 ∨ P2 to
P3 such that P3 = (P1∨P2 ) without loss of infor-
mation. In the OO context, this happens quite of-
ten as a subclass usually behaves very similarly to
its superclass. We illustrate the merging through
the example in Fig. 10. Both DblA and C extend A
where DblA overrides the original methods with a
backup field to store the original value in field val.
We infer static specifications for the three classes
respectively: [this 7→ A⟨e⟩] [ok: this 7→ A⟨x⟩] for
A; [this 7→ DblA⟨e, b⟩] [ok: this 7→ DblA⟨x, e⟩] for DblA;
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and [this 7→ C⟨e⟩] [ok: this 7→ C⟨x⟩] for C . By using merging, the dynamic spec
for A : set can be obtained as:
[this 7→ A(e, {DblA(b),C ()})] [ok: this 7→ A(x , {DblA(e),C ()})]. Next, we de-
fine the generalised relaxed-manifest bug via merging.

Definition 3 (Relaxed-Manifest Bug). Let E be a mapping from error state-
ment S to the set of error specifications terminated at it. Then, S denotes a
manifest bug if point 1 holds and point 3 holds after the merging described by
point 2:

1. E(S ) ̸= ∅ and ∀spec ∈ E(S). sat(post(spec))

2. ∀spec ∈ E(S). pre(spec)
merging steps−−−−−−−−−→ Epre(S)

3. ∃p ∈ Epre(S). κ ∧ ϕty ⊢ p

Where κ is the heap formula representing the possible heap resources without
pure constraints. ϕty represents the initial type constraints (constructed from the
initial method signature) we mentioned earlier.

We require the postconditions in specifications to be satisfiable and E(s) is
non-empty. Epre(s) is the set of formulae formed by merging the preconditions
from all specifications in E(s) through the following steps repeatedly until the
preconditions cannot be merged.

– Step 1: Merge all vars in pres with the same path condition by merging rule.
– Step 2: Combine the merged formulae using the ∨ calculus.

These steps are trying to check if an error happens in several paths. “Context-
independent” bugs in the OO program should occur regardless of the types of
input parameters as the types of input objects are the additional dimension
of the calling context. In the actual implementation, we sometimes relax this
requirement. If there is no instanceof or casting throughout the method, we will
report a bug that occurs when the types of inputs are the same as the declared
ones since programmers may not consider subclasses in this case.

Note that the merging for the dynamic specification formation and bug re-
porting are different. The former is the merging of multiple specifications across
multiple methods (from different classes) while the latter happens within one
method and we only merge preconditions. Both of them may need to use c-
hierarchy predicates to represent heap objects.

5.2 Reporting Class-Cast-Exceptions

A statement (C ) e could cause a CCE if ty constraints(e) ≠⇒ (ty(e)≺:C ) in the
precondition. CCEs and NPEs share the following similarities: 1) The statement
might not always trigger a runtime exception; 2) A guard can prevent the error
(e.g., null checks for NPEs and instanceof checks for CCEs); 3) Without a guard,
it’s difficult to determine if an error should be reported, as the programmer may
intentionally omit it based on their design, leading to potential false positives.
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Since NPEs and CCEs exhibit similar characteristics, we can adopt the same
methodology used for NPEs when addressing CCEs. However, our experimental
findings indicate that this approach results in minimal detection of CCEs in real-
world projects. There are two potential explanations for this. Firstly, program-
mers might not experience CCEs like NPEs; for instance, they may not pass a
manifest-error object with incompatible types to methods. Secondly, CCEs could
arise from external libraries with inaccessible source code or through code reuse.
Programmers may lack awareness of the complete class hierarchy, leading them
to overlook certain input object possibilities while coding. Even though only a
certain kind of inputs can lead to CCEs, they could be in the interests of the
programmers. According to a prior survey [30], 50% of the casting operations are
unguarded by the instanceof checking which risks the programs. Is the casting
operation safe when the programmers are aware of using instanceof checking?
Our primary thought is that if CCEs still occur when programmers realise to do
type filtering by using instanceof , it might be a mistake and we should alert the
programmer about such a mistake. When we apply this strategy, we find some
true CCEs in real-world projects, such as the examples in Fig. 1 and Fig. 7. We
formally define the reporting criteria for CCEs in Definition 4.

Definition 4 (CCE Reporting Criteria). An er triple is reportable if: It
ends at a casting operation C (e) and the postcondition is satisfiable; and

– It satisfies Definition 3; or
– e is an initialized object such that ty(e) = C ′ and C ′ ̸≺:C; or
– An instanceof operator has been applied on e before the casting operation.

6 Implementation and Evaluation

Implementation. We build ILoop inside Infer’s framework (version id: 5050294)
with an additional 10K lines of OCaml codes. We utilise Infer’s bi-abductive
entailment solver to compute missing formulae and frames. ILoop is an under-
approximating analyser for finding bugs in Java programs. It performs composi-
tional reasoning and generates IL triples for error reporting. In particular, ILoop
includes a function compute(p, Tsp,mn(C̄ ō)) as the predicate transformer. Given
a method mn, this function takes the initial precondition p mentioned in Sect.
4.2 and the specification table as inputs. It then applies the inference relations
in Sect. 4 to infer the preconditions and the postcondition ϵ′: Q′ of mn. Given a
Java program, ILoop first generates static specifications for methods and then,
ILoop reports bugs on error triples if they satisfy the criteria in Sect. 5. The
dynamic specifications are computed on-demand to save resources i.e., ILoop
infers dynamic specifications for a method only when the method is dynamically
dispatched and called somewhere. The inferred specifications are stored in Tsp.

To reduce the possible high cost of satisfiability checking when merging for-
mulae for error reporting, we design some heuristics which can identify a subset
of bugs in the proposed mechanism. We inspect errors likely to manifest after
merging, i.e., the error specifications occupy a large portion of paths when there
is no path dropping. We use syntactic checks to filter pairs of triples that are
more likely to be merged successfully. Using these heuristics, ILoop keeps more
informative IL triples to assist with reportable bugs.
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Evaluation. To conduct the experiments, we select a set of real-world programs
as our benchmarks. In particular, the benchmarks are from a test case repository
developed and maintained by Meta/Infer developers [17], Apache projects[1] and
some popular code repositories which receive thousands of stars on Github. This
Infer’s repository contains challenging test cases and is accumulated in a real-
world codebase. Some are for regression testing, and others for designing and
testing new features of its tools, such as Pulse. The latter is beyond its capability,
such as detecting CCEs. The experiments are designed to answer the following
three research questions (RQ):

- RQ1: Is our approach capable of detecting CCEs in OO programs?
- RQ2: Are the detected CCEs containing false positives?
- RQ3: How does ILoop compare in performance with the state-of-the-art tool
for detecting NPEs.

Table 1. CCEs Reported by ILoop and Error Prone. CCEs: number of CCEs reported.
Fixed: the number of CCEs has been fixed according to the commits. Risky: the number
of risky CCEs that have not been fixed in any commits. T: running time in seconds.
The numbers in red indicate the false positives reported by ILoop.

#
Project ILoop Error Prone

Name KLoc CCEs Fxied Risky T CCEs Fxied Risky T

1 Infer-c2dc303 11.4 2 0 2 11 0 0 0 2
2 pdfbox-a51dd40 12.1 4+1 2 2 42 0 0 0 28
3 ebean-b450227 20.7 3 0 3 40 3 0 3 42
4 HdrHistogram-9866a4c 27.2 1 1 0 27 1 1 0 5
5 jedis-febc027 33.9 1 1 0 20 0 0 0 12
6 spoon-9c1c3bf 46.5 6+1 2 4 43 0 0 0 33
7 classgraph-1310809180s 136.7 1 1 0 180 0 0 0 15
8 jfreechart-21922c1 292.6 1 0 1 32 0 0 0 30
9 Others 285.1 1+2 1 0 87 0 0 0 39

Total 859.7 20+4 8 12 482 4 1 3 206

To answer RQ1, we summarize the experimental results on Table 1. Firstly,
we compare the reported results with the Github commits. ILoop reports 24
CCEs in total and 8 (33.3%) are corrected by the developers. We examine the rest
of the reports and find another 12 reports risky, especially when the code is used
by someone unaware of the entire class hierarchy. Secondly, we compare ILoop
with Error Prone (version 2.32.0), a popular static analyser developed by Google
[2] for Java programs. Error Prone detects bugs through pattern recognition [3]
and alerts users when the written code matches the pre-defined error patterns.
Error Prone has reported four bugs which are the subset of ILoop’s reports.
One of the four is fixed by the developers while the other three match our risky
reports. The results show that ILoop could effectively find more meaningful bugs
in real-world programs.

To answer RQ2, as Table 1 shows, we conclude that there are 4 false positives.
As the rules for reporting CCEs are designed to avoid false positives, the false
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1 protected SettableBeanProperty constructSettableProperty (...){
2 ...
3 if (mutator instanceof AnnotatedMethod) {
4 prop = new MethodProperty (( AnnotatedMethod) mutator);
5 } else {
6 // 08-Sep -2016, tatu: wonder if we should verify it is

‘AnnotatedField ‘ to be safe?
7 prop = new FieldProperty (( AnnotatedField) mutator);
8 // ToolX reports one error at line 7

Fig. 11. A (Simplified) False Positive Reported by ILoop [5]

positive rate is fairly low (16.7%). We manually investigate the reports, such
as by referring to the developer’s comments or using semantic analysis. We find
that although some bugs can be syntactically triggered, they may not be of users’
interests. Hence, we mark them as false positives. We show a false positive in Fig.
11. According to our proposed reporting strategy, line 7 may contain a casting
error. This is because ILoop finds out that there exist some types that are neither
the subtype of AnnotatedMethod nor AnnotatedField for object mutator . Hence,
casting at line 7 could be risky. It seems that the authors are aware of this issue
and write a comment at line 6. The comment mentions that they should verify
the correctness of this casting. However, the code has not been changed since
the creation of this comment. Hence, mutator may not be an instance from the
dangerous classes in an actual execution. It could be semantically safe.

Table 2. NPEs Reported by ILoop and Pulse. Op: the overlapping reports by both
tools. TTX ,PL: running time in seconds. -FP: the number of false positives reduced by
ILoop. +TP: the number of additional true bugs found by ILoop. +FP: the additional
false positive reported by ILoop. -TP: the missed true bugs by ILoop. The commit ID
of jackson-databind is 4a40123.

# Project KLoc ILoop TTX Pulse TPL Op -FP +TP +FP -TP

1 Infer-c2dc303 11.4 96 11 89 10 89 0 7 0 0

2 pdfbox-606f916 21.6 48 44 50 41 44 3 4 0 3

3 spoon-5e77e89 33.5 9 101 11 96 6 5 2 1 0

4 ebean-b0ec23e 48.4 20 36 22 32 17 3 3 0 2

5 Botania-92f4863 77.4 21 47 18 39 18 0 3 0 0

6 ratis-8a50099 109.8 8 50 10 51 8 2 0 0 0

7 jackson-databind 210.3 6 47 12 18 6 6 0 0 0

8 picocli-a856a14 776.7 7 70 6 60 6 0 1 0 0

Total 1289.1 215 406 218 347 194 19 20 1 5

To answer RQ3, we compare ILoop with Pulse (Infer version id: 5050294,
July 2023). The results of our experiments are shown in Table 2. We analyse
the bugs reported by both tools, categorizing them as true or false positives.
Focusing on non-overlapping reports to highlight the differences between ILoop
and Pulse, we find that ILoop eliminates an average of 16.9% of Pulse’s false
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positives and identifies 10.1% new true positives. Together, these improvements
lead to a 27.0% increase in precision. The missed true bugs and newly introduced
false positives represent a small fraction of ILoop’s reports and both tools ex-
hibit similar running times. Overall, our findings demonstrate that our approach
effectively enhances bug-finding precision.

7 Related Work and Conclusion

Incorrectness Logic. Applications of IL have been investigated in different
domains, such as finding memory errors in large C projects [20], detecting data
race/deadlock in concurrent programs [36], verifying quantum while-programs
[15], detecting logical bugs in quantum programs [39], detecting forbidden graph
structures and failing executions [34]. Similar to IL, other recent logics focus-
ing on under-approximating reasoning include local completeness of abstract
interpretation [11], outcome logic [40], and exact separation logic [29]. Unfortu-
nately, none of them supports class inheritance and method overriding, except
for [26]. [26] proposes a verification system for upholding Liskov substitution
principle (LSP) in under-approximating reasoning. However, specifications must
be manually provided in this system, and the lack of automation could limit
its practicality in analysing large projects. Moreover, their work focuses on ver-
ification. It is hard for users to know if an error specification is risky or likely
harmless. Our reporting criteria remedy this by only reporting dangerous error
specifications automatically.
Formal Verification for OO programs. OO program verification via over-
approximation has been extensively studied in various works: Verifying objects
through dynamic frames to handle aliasing problem [18]; using supertype ab-
straction for concise and modular reasoning [28,23,21,22]; using separation logic
and abstraction predicate for reasoning about abstract datatypes [32,38]; using
class invariant to ensure the functional correctness of programs [16,9,25]. Later,
two independent papers [13,33] propose the co-existence of static/dynamic spec-
ifications for OOP to uphold LSP while avoiding re-verification. Following the
landscape of the proposals in [13,32,33,26], we propose our system for IL stat-
ic/dynamic specification inference in OO programs.
Bugs in OO Programs. NPEs and CCEs are common bug types in OO pro-
grams. Error-prone is a pattern-based bug detector[2]. It supports CCE detec-
tion, but only finds CCEs in a specific way via pattern recognition [3]. In our
work, we thoroughly study how to detect possible CCEs and our ILoop can ef-
fectively find more bugs. On the other hand, ILoop also outperforms another
state-of-the-art Pulse in terms of finding NPEs as we model the OO features in
our approach, such as class inheritance and method overriding. DOOP frame-
work [10] performs pointer analysis for Java programs using Datalog, which po-
tentially discovers CCEs when pointers are cast improperly. However, DOOP’s
analysis is not fully modular. It requires a main method as an entry point, and
only pointers initialised can be checked. Such scenarios are the subsets of our
CCE reporting criteria. DOOP could not find the errors like Fig. 1, Fig. 7.
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Specification Inference via Bi-abduction. Bi-abduction [12] is a form of log-
ical inference for separation logic that automates local reasoning. Bi-abduction
generates pre/post based on frame and anti-frame formulae inference. Like the
prior tool Pulse-X, we also make use of the bi-abduction technique in our spec-
ification inference process. Moreover, we incorporate type information analysis,
which enables our tool to support class inheritance and method overriding. In
addition, we propose the merging mechanism to support generalised error re-
porting, which improves the bug-finding precision.

Conclusion. Motivated by the question “How to generically and automati-
cally infer IL specifications for object-oriented programs?”, we demonstrate that
carrying type information is crucial. Type constraints reveal runtime type pos-
sibilities, enabling static analysis of dynamic behaviours. Our system reasons
about casting operations and infers static/dynamic specifications to effectively
identify bugs in OO programs. Specifically, we formalise the inference relations
to guarantee the validity of our inferred specifications. We also provide novel
insights into bug reporting for OO programs, supporting both NPE and CCE
detections through sound reasoning. Our approach establishes a formal founda-
tion for IL-based bi-abductive inference in OO programs.
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cation (MoE) Tier 3 grant “Automated Program Repair”, MOE-MOET32021-
0001. We thank anonymous reviewers for their insightful comments.
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