
Automated Temporal Verification with

Extended Regular Expressions

Thesis Presentation @ LSD, UCSC

By Yahui Song, 4th Nov 2022

Supervised by Prof. Chin Wei Ngan

Automated Temporal Verification with

Extended Regular Expressions

https://www.comp.nus.edu.sg/~yahuis/

Temporal Verification

Manual modelling

To be bounded when
non-terminating

Expressiveness power is limited
by the finite-state automata

A verified logic
≠

A verified implementation

Diagram taken from: Abate, Alessandro, et al. "Rational verification: game-theoretic verification of multi-agent systems."

A New Framework for Temporal Verification

+ Feeding the program with annotated specifications directly.

ü A verified logic = A verified implementation

+ Flexible specifications, which an be combined with other logic.

+ Symbolic entailment checker with co-inductive proofs for infinite traces.

- Automation/Decidability.

Using extended regular expressions to be the specifications.

Target
Language

Specification
Language Applied Domain Publication

1 C DependentEffs General Effectful Programs [ICFEM 2020]

2 Impa/s SyncEffs Reactive Systems [VMCAI 2021]

3 Ct TimEffs Time Critical Systems Under submission

4 λh ContEffs Algebraic Effects and Handlers [APLAS 2022]

Proposals Overview

Main Challenges

A. Traditional Sequential Control Flows

B-2. Complex non-local control flow

v Customized forward verifier: to closely capture the semantics of given program.

v Customized TRS: to solve specifications on different expressiveness level.

v Soundness and termination proofs for forward verifiers and TRSs.

B-1. Distributed systems with shared variables

A. Traditional Sequential Control Flow

1. DependentEffs : General Effectful Programs

2. SyncEffs: Reactive Systems

Integrated Dependent Effects

𝚽’ = (Send* ・ Done, Sendω) [Martain 2014]

𝚽’’ = (Sendn・ Done, Sendω) [Yoji 2018]

send n =

if n == 0 then event [Done];

else event [Send];

send (n - 1);

Integrated Dependent Effects

𝚽’ = (Send* ・ Done, Sendω) [Martain 2014]

𝚽’’ = (Sendn・ Done, Sendω) [Yoji 2018]

𝚽pre = True ∧ Ready ・ _*

𝚽post(n) = n ≥ 0 ∧ (Sendn・ Done) ∨ n < 0 ∧ (Sendω)

send n =

if n == 0 then event [Done];

else event [Send];

send (n - 1);

Integrated Dependent Effects

𝚽’ = (Send* ・ Done, Sendω) [Martain 2014]

𝚽’’ = (Sendn・ Done, Sendω) [Yoji 2018]

𝚽pre = True ∧ Ready ・ _*

𝚽post(n) = n ≥ 0 ∧ (Sendn・ Done) ∨ n < 0 ∧ (Sendω)

server n =

event [Ready];

send (n);

server (n);

𝚽pre = n ≥ 0 ∧ 𝜖

𝚽post(n) = n ≥ 0 ∧ (Ready・ Sendn・ Done)ω

send n =

if n == 0 then event [Done];

else event [Send];

send (n - 1);

Integrated Dependent Effects

𝚽’ = (Send* ・ Done, Sendω) [Martain 2014]

𝚽’’ = (Sendn・ Done, Sendω) [Yoji 2018]

𝚽pre = True ∧ Ready ・ _*

𝚽post(n) = n ≥ 0 ∧ (Sendn・ Done) ∨ n < 0 ∧ (Sendω)

server n =

event [Ready];

send (n);

server (n);

𝚽pre = n ≥ 0 ∧ 𝜖

𝚽post(n) = n ≥ 0 ∧ (Ready・ Sendn・ Done)ω

𝚽pre = True ∧ 𝜖

𝚽post(n) = n ≥ 0 ∧ (Ready・ Sendn・ Done)ω

∨ n < 0 ∧ (Ready・ Sendω)

send n =

if n == 0 then event [Done];

else event [Send];

send (n - 1);

Integrated Dependent Effects – Summary

send n =

if (. . .) then event [Done];

else event [Send];

send (n - 1);

1. Aware of termination (mixed definition)

v (n ≥ 0 ∧ Sendn・ Done) ∨ (n < 0 ∧ Sendω)

2. Beyond the context-free grammar

v an · bn · cn

3. Effects in precondition is new

v𝚽pre = True ∧ Ready ・ _*

4. Undetermined termination (Kleene Star)

v True ∧ Send* ・ Done

Forward Verifier
send n =

if n == 0 then event [Done];

else event [Send];

send (n - 1);

𝚽pre = True ∧ Ready ・ _*

𝚽post(n) = (n ≥ 0 ∧ Sendn・ Done) ∨ (n < 0 ∧ Sendω)

Forward Verifier
send n =

{True ∧ Ready ・ _*}

if n == 0 then event [Done];

{n=0 ∧ Ready ・ _* ・ Done}

else event [Send];

send (n - 1);

𝚽pre = True ∧ Ready ・ _*

𝚽post(n) = (n ≥ 0 ∧ Sendn・ Done) ∨ (n < 0 ∧ Sendω)

Forward Verifier
send n =

{True ∧ Ready ・ _*}

if n == 0 then event [Done];

{n=0 ∧ Ready ・ _* ・ Done}

else event [Send];

{n!=0 ∧ Ready ・ _* ・ Send}

send (n - 1);

{n!=0 ∧ Ready ・ _* ・ Send ・((n > 0 ∧ Sendn-1・ Done) ∨ (n < 0 ∧ Sendω))}

𝚽pre = True ∧ Ready ・ _*

𝚽post(n) = (n ≥ 0 ∧ Sendn・ Done) ∨ (n < 0 ∧ Sendω)

n!=0 ∧ Ready ・ _* ・ Send

⊑

True ∧ Ready ・ _*

Forward Verifier
send n =

{True ∧ Ready ・ _*}

if n == 0 then event [Done];

{n=0 ∧ Ready ・ _* ・ Done}

else event [Send];

{n!=0 ∧ Ready ・ _* ・ Send}

send (n - 1);

{n!=0 ∧ Ready ・ _* ・ Send ・((n > 0 ∧ Sendn-1・ Done) ∨ (n < 0 ∧ Sendω))}

{Ready ・ _* ・ ((n=0 ∧ Done) ∨ (n > 0 ∧ Send ・ Sendn-1・ Done) ∨ (n < 0 ∧ Send ・ Sendω))}

Goal: 𝚽body ⊑ 𝚽post(n)

ØMix Finite & Infinite traces

ØBranching Properties

𝚽pre = True ∧ Ready ・ _*

𝚽post(n) = (n ≥ 0 ∧ Sendn・ Done) ∨ (n < 0 ∧ Sendω)

Goal: 𝚽body ⊑ 𝚽post(n)

ØMix Finite & Infinite traces

ØBranching Properties

(n=0 ∧ Done) ∨ (n > 0 ∧ Send ・ Sendn-1・ Done) ∨ (n < 0 ∧ Send ・ Sendω)

⊑

𝚽post(n) = (n ≥ 0 ∧ Sendn・ Done) ∨ (n < 0 ∧ Sendω)

(n=0 ∧ Done) ∨ (n > 0 ∧ Send ・ Sendn-1・ Done) ∨ (n < 0 ∧ Send ・ Sendω)

⊑

𝚽post(n) = (n ≥ 0 ∧ Sendn・ Done) ∨ (n < 0 ∧ Sendω)

Goal: 𝚽body ⊑ 𝚽post(n)

ØMix Finite & Infinite traces

ØBranching Properties

Term Rewriting System - Example

Term Rewriting System - Example

Term Rewriting System - Example

Term Rewriting System - Example

Term Rewriting System - Example

Term Rewriting System - Example

Formal Specification & Entailment Rules

Formal Specification & Entailment Rules

Implementation and Evaluation

• An open-sourced prototype system using Ocaml.

• Benchmark: 16 IOT programs implemented in C for Arduino controlling

programs:

Øderive temporal properties (in total 235 properties with 124 valid and 111 invalid)

Øexpress these properties using both LTL formulae and our effects,

Øwe record the total computation time using PAT and our TRS.

Implementation and Evaluation (Insights)

• When the transition states of the models are small, the average execution time spent by

the TRS is even less than the NFAs construction time, which means it is not necessary to

construct the NFAs when a TRS solves it faster;

• When the total states become larger, on average, the TRS outperforms automata-based

algorithms, due to the significantly reduced search branches provided by the

normalization lemmas; and

• For the invalid cases, the TRS disproves them earlier without constructing the whole NFAs.

B. Beyond Sequential Control Flow

3. TimEffs: Time Critical Systems:

Ø mutable variables and concurrency

Ø timed behavioural patterns, such as delay, timeout, interrupt, deadline, etc.

4. ContEffs Algebraic Effects and Handlers

Ø The coexistence of zero-shot, one-shot and multi-shot continuations

Ø Non-terminating behaviours.

Timed Verification via Timed Automata
• Timed Automata lack high-level compositional patterns for hierarchical design.

• Manually casting clocks is tedious and error-prone.

• Timed process algebras (PAT) such as timed CSP, is translated to Timed Automata (TA) so

that the model checker Uppaal can be applied.

TimEffs - Symbolic Timed Automata

Expressiveness of TimEffs

Inclusion Checking – SMT based Term Rewriting

Target Language Ct, imperative with timed constructs:

Specification Language TimEffs:

Implementation and Evaluation
Observations:

i. proving/disproving time ⇗ if the

effect computation time ⇗

ii. While the number of querying Z3 per

property (#AskZ3/(#Prop(✓)+#Prop(✗))

⇗, the proving/disproving time ⇗

iii. the disproving times for invalid

properties are constantly lower

than the proving process.

Implementation and Evaluation

Observations:

i. automata-based model checkers (both PAT and Uppaal) are vastly efficient when given concrete

values for constants d and e;

ii. our proposal can symbolically prove the algorithm by only providing the constraints, of d and e.

iii. our verification time largely depends on the number of querying Z3.

B. Beyond Sequential Control Flow

3. TimEffs: Time Critical Systems:

Ø mutable variables and concurrency

Ø timed behavioural patterns, such as delay, timeout, interrupt, deadline, etc.

4. ContEffs Algebraic Effects and Handlers

Ø The coexistence of zero-shot, one-shot and multi-shot continuations

Ø Non-terminating behaviours.

Effect Handlers

Example taken from “Effect Handlers in Multicore OCaml” slides by KC Sivaramakrishnan.

It prints: 0 1 2 3 4

Effect Handlers – We can achieve:
• The coexistence of zero-shot, one-shot and multi-shot continuations. Should it be

permitted or forbidden to invoke a captured continuation more than once?

• Non-terminating behaviours with higher-order effect signatures and deep handlers.

• Linear temporal properties. The behaviour is determined by the encompassing handlers.

More examples with specifications

Target Language λh, pure, higher-order, call by value

Specification Language ContEffs:

Target
Language

Specification
Language Applied Domain Publication

1 C DependentEffs General Effectful Programs [ICFEM 2020]

2 Impa/s SyncEffs Reactive Systems [VMCAI 2021]

3 Ct TimEffs Time Critical Systems Under submission

4 λh ContEffs Algebraic Effects and Handlers [APLAS 2022]

Proposals Overview

Main Challenges
v Customized forward verifier: to closely capture the semantics of given program.

v Customized TRS: to solve specifications on different expressiveness level.

v Soundness and termination proofs for forward verifiers and TRSs.

Summary & Status
• New framework for temporal verification.

vMore expressiveness specifications.

vFine-grained, semantics oriented, forward verifiers.

vTerm-rewriting systems.

• Implementations upon possible application scenes and evaluations.

vGeneral Effectful Programs [ICFEM 2020]

vReactive Systems [VMCAI 2021]

vTime Critical Systems (Under Submission)

vAlgebraic Effects and Handlers [APLAS 2022]

Future Work
• Temporal Verification with Spatial Information

• Temporal Verification with Incorrectness Logic

• Program Synthesis via More Expressive Temporal logics

Thank you for
your attention!

Related Links
1. DependentEffs: [PDF] [Video] https://github.com/songyahui/EFFECTS

2. ASyncEffs: [PDF] [Video] https://github.com/songyahui/SyncedEffects

https://github.com/songyahui/Semantics_HIPHOP

3. TimEffs: [PDF] https://github.com/songyahui/Timed_Verification

4. ContEffs: [PDF] https://github.com/songyahui/AlgebraicEffect

https://www.comp.nus.edu.sg/~yahuis/ICFEM20.pdf
https://www.youtube.com/watch?v=xztQ-6aCR8E
https://github.com/songyahui/EFFECTS
https://www.comp.nus.edu.sg/~yahuis/VMCAI2021.pdf
https://www.youtube.com/watch?v=NKowPEtK4OY
https://github.com/songyahui/SyncedEffects
https://github.com/songyahui/Semantics_HIPHOP
https://www.comp.nus.edu.sg/~yahuis/SPLASH2022SRC.pdf
https://github.com/songyahui/Timed_Verification
https://www.comp.nus.edu.sg/~yahuis/APLAS2022.pdf
https://github.com/songyahui/AlgebraicEffect

