
PhD Candidate:

Superviser:

Examiners:

HoD Representative:

Automated Temporal Verification with

Extended Regular Expressions

Yahui Song

Prof. Wei Ngan Chin

Prof. Jin Song Dong and Prof. Joxan Jaffar

Prof. Siau Cheng Khoo

15th May 2023 @ Soc, NUS

Temporal Verification – Existing Framework

Manuel/CSP
Modelling

To be bounded
due to the lack of
symbolic proving

Expressiveness is limited
by the finite-state automata

A verified model

≈
A verified implementation

Temporal Logic

Property 𝚽

MODEL CHECKER

Yes, Property 𝚽 is true No, Property 𝚽 is not true

& counterexamples
2

A New Framework for Temporal Verification

+ A verified implementation;

+ Flexible specifications, which an be combined with other logic;

3

A New Framework for Temporal Verification

+ A verified implementation;

+ Flexible specifications, which an be combined with other logic;

+ Efficient symbolic entailment checker with (co-)inductive proofs;

4

(Term Rewriting System)

(Types-and-Effect Systems)

+ A verified implementation;

+ Flexible specifications, which an be combined with other logic;

+ Efficient symbolic entailment checker with (co-)inductive proofs;

- Automation/Decidability.

A New Framework for Temporal Verification

5

+ A verified implementation;

+ Flexible specifications, which an be combined with other logic;

+ Efficient symbolic entailment checker with (co-)inductive proofs;

- Automation/Decidability.

A New Framework for Temporal Verification

6

Automata vs. RE : Σ*⊑ L(A)

s1, s2

s2, s3 s1, s2, s4

s1, s3 s2, s3

s1, s3s1, s2

s2, s3 s1, s2, s3, s4

s1, s2, s3 s1, s2, s3, s4

s1, s2, s3 s1, s2, s3, s4

a b

a

a

a

a

a

b

b

b

b

b

Ø Init/Next

Ø Processed

Ø Rejecting

Flexibility and Efficiency

7

Flexibility and Efficiency
Automata vs. RE : Σ*⊑ L(A)

s1, s2

s2, s3 s1, s2, s4

s1, s3 s2, s3

s1, s3s1, s2

s2, s3 s1, s2, s3, s4

s1, s2, s3 s1, s2, s3, s4

s1, s2, s3 s1, s2, s3, s4

a b

a

a

a

a

a

b

b

b

b

b

Ø Init/Next

Ø Processed

Ø Rejecting

8

u u-1S
S

Automata vs. RE : Σ*⊑ L(A)

s1, s2

s2, s3 s1, s2, s4

s1, s3 s2, s3

s1, s3s1, s2

s2, s3 s1, s2, s3, s4

s1, s2, s3 s1, s2, s3, s4

s1, s2, s3 s1, s2, s3, s4

a b

a

a

a

a

a

b

b

b

b

b

Ø Init/Next

Ø Processed

Ø Rejecting

Ø First/Derivatives

Ø Proof Context

Ø Null-able/Infinite-able

(a ∨ b)★⊑ (a ∨ b ∨ bb)★ [Reoccur]

ɛ ⋅ (a ∨ b)★⊑ ɛ ⋅ (a ∨ b ∨ bb)★

a ⋅ (a ∨ b)★⊑ (a ∨ b ∨ bb)★ b ⋅ (a ∨ b)★ ⊑ …

(a ∨ b)★⊑ (a ∨ b ∨ bb)★

[Reoccur]

9

Flexibility and Efficiency

Target
Language

Specification
Language Applied Domain Research Paper

1 C IntegratedEffs General Effectful Programs (ICFEM 2020)

2 Impa/s SyncEffs Synchronous Programming (VMCAI 2021)

3 Ct TimEffs Time Critical Systems (TACAS 2023)

4 λh ContEffs Algebraic Effects and Handlers (APLAS 2022)

Proposals Overview

Main Challenges

v Customized forward verifier: to closely capture the semantics of given program;

v Customized TRS: to solve specifications on different expressiveness level;

v Soundness and termination proofs for forward verifiers and TRSs.
10

1. DependentEffs : General Effectful Programs

Ø Mixed finite (inductive) and infinite (coinductive) traces

2. SyncEffs: Synchronous Programming

3. TimEffs: Time Critical Systems

4. ContEffs Algebraic Effects and Handlers

5. Conclusion and the Future Work

Outline

Integrated Dependent Effects

𝚽’ = (Send★・ Done, Sendω) [Hofmann, Martin, and Wei Chen. 2014]

𝚽’’ = (Sendn・ Done, Sendω) [Nanjo, Yoji, et al. 2018]

send n =

if n == 0 then event [Done];

else event [Send];

send (n - 1);

12

Integrated Dependent Effects

𝚽’ = (Send★・ Done, Sendω) [Hofmann, Martin, and Wei Chen. 2014]

𝚽’’ = (Sendn・ Done, Sendω) [Nanjo, Yoji, et al. 2018]

𝚽pre = True ∧ Ready ・ _*

𝚽post(n) = n ≥ 0 ∧ (Sendn・ Done) ∨ n < 0 ∧ (Sendω)

send n =

if n == 0 then event [Done];

else event [Send];

send (n - 1);

13

𝚽’ = (Send* ・ Done, Sendω)

𝚽’’ = (Sendn・ Done, Sendω)

𝚽pre = True ∧ Ready ・ _*

𝚽post(n) = n ≥ 0 ∧ (Sendn・ Done) ∨ n < 0 ∧ (Sendω)

server n =

event [Ready];

send (n);

server (n);

𝚽pre = n ≥ 0 ∧ 𝜖

𝚽post(n) = n ≥ 0 ∧ (Ready・ Sendn・ Done)ω

𝚽’pre = True ∧ 𝜖

𝚽’post(n) = n ≥ 0 ∧ (Ready・ Sendn・ Done)ω

∨ n < 0 ∧ (Ready・ Sendω)

send n =

if n == 0 then event [Done];

else event [Send];

send (n - 1);

14

Integrated Dependent Effects

1. Aware of termination (mixed definition): (n ≥ 0 ∧ Sendn・ Done) ∨ (n < 0 ∧ Sendω)

2. Beyond the context-free grammar: an · bn · cn

3. Effects in precondition is new: 𝚽pre = True ∧ Ready ・ _*

4. Undetermined termination (Kleene Star): True ∧ Send★・ Done

Integrated Dependent Effects

15

Classic Regular
Expressions

Revised semantics
of the repeated patterns

• An open-sourced prototype system using OCaml.

• Benchmark: 16 IOT programs implemented in C for Arduino controlling

programs:

Ø derive temporal properties (in total 235 properties with 124 valid and 111 invalid)

Ø express these properties using both LTL formulae and our effects,

Ø we record the total computation time using PAT and our TRS.

Implementation and Evaluation

16

• An open-sourced prototype system using OCaml.

• Benchmark: 16 IOT programs implemented in C for Arduino controlling

programs:

Ø derive temporal properties (in total 235 properties with 124 valid and 111 invalid)

Ø express these properties using both LTL formulae and our effects,

Ø we record the total computation time using PAT and our TRS.

Implementation and Evaluation

17

1. DependentEffs : General Effectful Programs

2. SyncEffs: Reactive Systems

Ø Synchronous program, logical correctness, causality

3. TimEffs: Time Critical Systems

4. ContEffs Algebraic Effects and Handlers

5. Conclusion and the Future Work

Outline

• System-design/modelling language.

• Deterministic semantics.

• Primitive constructs execute in zero time except for the pause statement.

• The (i) correctness and (ii) safety issues are particularly critical.

Esterel – A synchronous language
[Berry G, Gonthier G. 1992]
[Jagadeesan L J, Puchol C, Von Olnhausen J E. 1995]
[Florence, Spencer P., et al. 2019]

19

Target Language λa/s, extending Esterel with synchronous constructs

Specification Language SyncEffs:

20

Logically incorrect examples, caught by SyncEffs.

21

Constructiveness

the status of the tested signal

must be determined before

executing the sub-expressions.

1. DependentEffs : General Effectful Programs

2. SyncEffs: Synchronous Programming

3. TimEffs: Time Critical Systems

Ø mutable variables and concurrency

Ø timed behavioural patterns, such as delay, timeout, interrupt, deadline, etc.

4. ContEffs Algebraic Effects and Handlers

5. Conclusion and the Future Work

Outline

Timed Verification via Timed Automata

Diagram modified from “Rewriting Logic Semantics and Symbolic Analysis for Parametric Timed Automata” in FTSCS ’22

3

5
4

8 7

• Timed Automata lack high-level compositional patterns for hierarchical design.

• Manually casting clocks is tedious and error-prone.

• Timed CSP, is translated to Timed Automata (TA) so that the model checker Uppaal can be applied.

23

Diagram modified from “Rewriting Logic Semantics and Symbolic Analysis for Parametric Timed Automata” in FTSCS ’22

8

• Timed Automata lack high-level compositional patterns for hierarchical design.

• Manually casting clocks is tedious and error-prone.

• Timed CSP, is translated to Timed Automata (TA) so that the model checker Uppaal can be applied.

Timed Verification via Timed Automata

24

We propose TimEffs - Symbolic Timed Automata

25

Target Language Ct, imperative with timed constructs:

Specification Language TimEffs:

26

Inclusion Checking – SMT based Term Rewriting

27

Inclusion Checking – SMT based Term Rewriting

28

Inclusion Checking – SMT based Term Rewriting

29

Inclusion Checking – SMT based Term Rewriting

Succeed!

30

Antimirov algorithm for solving REs’ inclusions
Definition 1 (Derivatives). Given any formal language S over an alphabet Σ and

any string u∈ Σ* , the derivatives of S w.r.t u is defined as: u-1S = {w ∈ Σ* | uw ∈ S}.

Definition 2 (Regular Expression Inclusion). For REs r and s,

r ⪯ s ⟺∀ A∈ Σ. A-1(r) ⪯ A-1(s) .

Definition 3 (TimEffs Inclusion). For TimEffs Φ1 and Φ2,

Φ1 ⊑ Φ2 ⟺∀ A∈ Σ. ∀ t≥0. (A#t)-1 Φ1 ⊑ (A#t)-1 Φ2 .

31

Antimirov algorithm for solving TimEffs’ inclusions

Implementation and Evaluation

Main Observations:
the disproving times for invalid

properties are constantly lower

than the proving process.

32

Evaluation – Fischer’s Mutual Exclusion Algorithm

33

Evaluation – Fischer’s Mutual Exclusion Algorithm

Observations:

i. automata-based model checkers (both PAT and Uppaal) are vastly

efficient when given concrete values for constants d and e;

ii. our proposal can symbolically prove the algorithm by only providing

the constraints, of d and e.

iii. our verification time largely depends on the number of querying Z3. 34

1. DependentEffs : General Effectful Programs

2. SyncEffs: Synchronous Programming

3. TimEffs: Time Critical Systems

4. ContEffs Algebraic Effects and Handlers

ØThe coexistence of zero-shot, one-shot and multi-shot continuations

ØNon-terminating behaviours.

5. Conclusion and the Future Work

Outline

Example taken from “Effect Handlers in Multicore OCaml” slides by KC Sivaramakrishnan.

[de Vilhena, Paulo Emílio, and François Pottier. 2021]

[Sivaramakrishnan, K. C., et al. 2021]

User-defined Effects and Handlers

36

User-defined Effects and Handlers
This prints: 0 1 2 3 4

Example taken from “Effect Handlers in Multicore OCaml” slides by KC Sivaramakrishnan.
37

Core Language λh: pure, higher-order, call by value

Specification Language ContEffs

38

Examples – Zero-shot continuations (Exceptions)

Step History Current
Event

Continuation Bindings

1 emp Exc! Other! · Other?() · Exc?() · ‡ ‡ = (fun x -> x)

2 Exc - - No “Continue”

Final Exc - -

39

Examples – Multi-shot continuation

40

Implementation and Evaluation
• Core implementation: 2500 LOC in OCaml, on top of Multicore OCaml (4.12.0)

• Validation: manually annotated synthetic test cases marked with expected outputs

41

Summary & Links
• New framework for temporal verification.

vMore modular – a compositional verification strategy.

vFiner-grained – semantics oriented, forward verifiers.

vMore efficient – term rewriting systems.

• Implementations upon possible application scenes and evaluations.

vGeneral Effectful Programs (ICFEM 2020) [PDF] [Video] [Code]

vReactive Systems (VMCAI 2021) [PDF] [Video] [Code1&Code2]

vTime Critical Systems (TACAS 2023) [PDF] [Code]

vAlgebraic Effects and Handlers (APLAS 2022) [PDF] [Code]
42

https://www.comp.nus.edu.sg/~yahuis/ICFEM20.pdf
https://www.youtube.com/watch?v=xztQ-6aCR8E
https://github.com/songyahui/EFFECTS
https://www.comp.nus.edu.sg/~yahuis/VMCAI2021.pdf
https://www.youtube.com/watch?v=NKowPEtK4OY
https://github.com/songyahui/SyncedEffects
https://github.com/songyahui/Semantics_HIPHOP
https://www.comp.nus.edu.sg/~yahuis/SPLASH2022SRC.pdf
https://github.com/songyahui/Timed_Verification
https://www.comp.nus.edu.sg/~yahuis/APLAS2022.pdf
https://github.com/songyahui/AlgebraicEffect

Possible Future Work
• Symbolic verification for probabilistic programming

• Temporal verification for hyper-properties (hyper temporal logic)

• Practical analysis for mixed synchronous and asynchronous features

• Trace-based verification with spatial information

vOngoing work: “Extending Separation Logic for Unrestricted Effect Handlers”

• Temporal verification with incorrectness logic

• Program-analyzer based repair

vOngoing work: “Automated Program Repair guided by Temporal Properties”

Thank you for
your attention!

43

Bibliography (I)
[Hofmann, Martin, and Wei Chen. 2014] "Abstract interpretation from Büchi
automata." Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS). 2014.

[Nanjo, Yoji, et al. 2018] "A fixpoint logic and dependent effects for temporal property
verification." Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science. 2018.

[Berry G, Gonthier G. 1992] “The Esterel synchronous programming language: Design,
semantics, implementation.” Science of computer programming, 19(2), 87-152.

[Florence, Spencer P., et al. 2019] "A calculus for Esterel: if can, can. if no can, no
can." Proceedings of the ACM on Programming Languages 3.POPL (2019): 1-29.

[Larsen, Kim G., Paul Pettersson, and Wang Yi. 1997] "UPPAAL in a nutshell." International
journal on software tools for technology transfer 1 (1997): 134-152.

44

Bibliography (II)
[Jagadeesan L J, Puchol C, Von Olnhausen J E. 1995] “Safety property verification of Esterel
programs and applications to telecommunications software.” In Computer Aided Verification: 7th
International Conference, CAV'95 Liège, Belgium, July 3–5, 1995 Proceedings 7 (pp. 127-140).
Springer Berlin Heidelberg.

[Dong, Jin Song, et al. 2008] "Timed automata patterns." IEEE Transactions on Software
Engineering 34.6 (2008): 844-859.

[Arias, Jaime, et al. 2022] "Rewriting Logic Semantics and Symbolic Analysis for Parametric Timed
Automata." Proceedings of the 8th ACM SIGPLAN International Workshop on Formal Techniques for
Safety-Critical Systems. 2022.

[de Vilhena, Paulo Emílio, and François Pottier. 2021] "A separation logic for effect
handlers." Proceedings of the ACM on Programming Languages 5.POPL (2021): 1-28.

[Sivaramakrishnan, K. C., et al. 2021] "Retrofitting effect handlers onto OCaml." Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation. 2021.

45

Thesis Revision Plan
On the comments of Examiner 1

1. Add more details of the similarities to the types-and-effects system;

2. Enrich the introductory with background material, such as the detailed

comparison between automata-based and the RE-based entailment proving;

3. Emphasize the novel departure (for each of the separated works) from the

original Antimirov algorithm;

4. Expand the discussions of various experiments, and the results will be

summarized rigorously against the adversaries or baselines.

46

Thesis Revision Plan
On the comments of Examiner 2

47

1. In Chapters 3 ~ 6, move the examples to later sections after technical

definitions;

2. Move the essence proofs to the main text and leave the simple ones as lemmas;

3. Add Rules for precondition strengthening and postcondition weakening;

4. Gather the forward rules into a figure in each of the chapters;

5. In tables 4.4, 5.3, and 6.1, compare results with existing methods, or justify why

no comparison is made (e.g., no similar tools exist).

