Linear Temporal Logic &
Specifying and Verifying Future Conditions

Yahui Song

Standard Chartered Bank @ Singapore

05 Feb 2026

1/16

Content

Linear Temporal Logic
Temporal Logic based Formal Methods

Specifying and Verifying Future Conditions
Detecting Use-after-free
Detecting Null-pointer Dereference
Specification Inference & Interprocedural Analysis
(NPD, Memory Leak)

Summary and Possibilities

2/16

Linear Temporal Property (LTL)

LTL formulas:
=1 |ap | PIADy | =D | XD | DUD, | FO|GD

» ap : atomic proposition, eg., v>0

> X (NeXt) : & is true at next step

» U (Until) : ¢; is always true until ®, becomes true
» F (Finally) : ¢ is eventually true

> G (Globally) : ® is always true

3/16

Linear Temporal Property (LTL)
LTL formulas:
Su=1|ap | PLADy | D | XD | DUD, | FO| GO
Evaluate LTL propositions over a sequence of states:

a arbitrary arbitrary arbitrary arbitrary

Atomic Prop.a: () —

arbitrary a arbitrary arbitrary arbitrary

Next Step a : O

aA-b aA-b aA-b b arbitrary
aUntilb: (O
-a -a -a a arbitrary
Finallya: O - D)
a a a a

Globallya: ()

4/16

Linear Temporal Property (LTL)

LTL formulas:
Gz 1 |ap | PLADy | D | XD | DUD, | FO| GO
Temporal Specifications:

> Liveness: "Traffic light is green infinitely

often" > G(Fgreen) A

» Ordering: "Once red, the light cannot become (
! yellow) <red/yel|ow>

green immediately" > red — —(X green)
> Responsiveness: "Every request will eventually

lead to a response" > G(request — Fresponse)

5/16

Temporal Logic-based Formal Methods

LTL formulas:
Gu=1]ap | O ADy | D | XD | DUD, | FD|GD

Regular Expressions:
Su=1|e|_|event|dy - Oy | Dy V Dy | 2D | OF

In formal methods, both LTL and regular expressions are used to specify
temporal properties. The language inclusion problem (A C B) is
decidable for both formalisms.

6/16

Temporal Logic-based Formal Methods

LTL formulas:
=1]ap | P1AD | 1P| XD |DUD, | FP|GOP

Regular Expressions:
Su=1|e|_|event|dy - Oy | D V Dy | D | OF

In formal methods, both LTL and regular expressions are used to specify
temporal properties. The language inclusion problem (A C B) is
decidable for both formalisms.

Formal Methods | Model Checking TgsZZtgeLmEﬁTt Verification [2,3]

Specification Regular Expressions Regular Expressions

Target Models Source Code Source Code

Term Rewriting

Algorithm Automata Inclusion Type Checking System

7/16

Term Rewriting Regular Expressions

» Deciding the inclusion of regular expressions (A C B)
» Flexible specifications, which can be combined with other logic

» Efficient entailment checker with inductive proofs.

Examples:
(avb)*E(aVvbVbb)* [Reoccur]

x>2AN E E x>1 A (EVF)
e-(avb)*Ee-(aVbVbb)* [Reoccur]

x>0A E Z x>1 A (EVF)
a-(avbh)*C(avbvbb)* b-(avb)*C ..

true A E ¥ true A (E.F)
(avb)*E(aVbVbb)*

8/16

Post Conditions vs. Future Conditions

main.c IR main.c RS
1 int x = 0; 1 int x = 0;

2 void test() 2 void test()

3 // pre: x=0 3 // pre: x=0

4 // post: x=1 4 // post: x=1

5 5 // future: Finally (x=3)
6-{x=x+1; 6-{x=x+1;

7 return; 7 return;

8 } 8 }

9 9

10~ int main() { 10~ int main() {

11 test(); 11 test();

12 X =X+ 2; 12 X =X + 2;

13} 13 }

9/16

Future Conditions

Preventing memory leak, double-free and use-after-free

void *malloc (size_t size);

// pre: size>0 A _*

// post: (res=null A €) V (res#null A malloc(res))

// future: (res=null A _*) V (res#null A F free(res))

void free (void *ptr);

// pre: true A _*

// post: true A free(ptr)
// future: true A G !_(ptr)

Preventing null-pointer dereference

(void) *ptr = v;

// pre: 3 ptr. true

// post: true A deref (ptr)

// future: (v=null A G !_(ptr)) V (v#null A _*)

10/16

Detecting Use-after-free

int paper(int argc, char xkargv) {

char xbufl, xbuf2, xbuf3;

bufl = (char *) malloc(1);
buf2 = (char %) malloc(1);
free(buf2);

buf3 = (char %) malloc(1);
strncpy(buf2,argv(1],1);
free(bufl); free(buf3); }

)
The future condition is violated (ST) here at line 40
Future condition is =
((((('free(v27))~* - free(v27) - (_)™*) /\
((!_(buf2))”%))) /\
((!'free(v35))~* - free(v35) - (_)"x))
Trace subtracted = strncpy(buf2)
Pure = bufl=v27abuf2=v30Av33=()Abuf3=v35av25=argv.1ATRUEATRUE

11/16

Detecting Null-pointer Dereference

nt main(int argc,
xdata = NULL;

if (argc > 1) {

data = malloc eof(int));
xdata = 100;

printf("Data value: %d\n", *data);

free(data);
return 0;

1
The future condition is violated (ST) here at line 14

Future condition is = (!_(xdata))”*
Trace subtracted = deref(xdata)
Pure = *data=0A0=0Aargc<=1ATRUE

Specification Inference

Input Specification:

Input program:

1tk create_array(int size) {
if (size <= 0) {
return NULL;
\

return malloc(size * sizeo f

| Inferred Specifications

/*@ create_array(size) =

REQ TRUE

ENS (:size<=0Av0=0 ; ¢ ; (_)"% ; vo) \/
(:size>@Av1=1Av2=(size*v1)Av3!=0 ; malloc(v3)

; (Ifree(v3d))r* -

free(v3) -

(L) v3) @/

13/16

Interprocedural Analysis

int main(int n) {
nt *xarr = create_array(n);
arr[0] = 100;

printf("First value: %d\n", arr[0]);
return 0;

The future condition is violated (ST) here at line 16
Future condition is = (!_(%arr))”x
Trace subtracted = deref(arr)
Pure = n<=0Av13=0A*arr=v13Av13=0ATRUE

2
The future condition is violated (Emp) here at line 20
Future condition is = (!free(v14))~x - free(vl4) - (_)™k
Trace subtracted = ¢
Pure = n>0Av1=1Av2=(n*v1)Av14!=0a%arr=v14Av14!=0Av10=100Av1l=arr.0Av12=0

Summary and Possibilities

Main Contribution

» Compositional static analyzer via temporal properties
» Novel future-condition

» Specification Inference
Several aspects remain open for future work...

» Higher-order programs (Callbacks)

» OOP

» Buffer Overflow

» Machine checkable verification results (Rocq)
> ...

Thank you for listening!

15/16

References

(1]

2]

(3]

Yoji Nanjo et al. “A Fixpoint

Logic and Dependent Effects for Temporal Property Verification”. In:
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Comp
Ed. Anuj Dawar a Erich Gradel. ACM, 2018, s. 759-768. DOI:
10.1145/3209108.3209204. URL:
https://doi.org/10.1145/3209108.3209204.

Yahui Song, Darius Foo a Wei-Ngan Chin. “Specifying and

Verifying Future Conditions”. In:

Static Analysis - 32nd International Symposium, SAS 2025, Singapore, Oci
Ed. Hakjoo Oh a Yulei Sui. Sv. 16100. Lecture Notes in Computer
Science. Springer, 2025, s. 90-112. DOTI:
10.1007/978-3-032-07106-4_5. URL:
https://doi.org/10.1007/978-3-032-07106-475C_5

Yahui Song et al. “ProveNFix: Temporal Property-Guided Program
Repair”. In: Proc. ACM Softw. Eng. 1.FSE (2024), s. 226-248. DOL:
10.1145/3643737. URL: https://doi.org/10.1145/3643737.

16 /16

https://doi.org/10.1145/3209108.3209204
https://doi.org/10.1145/3209108.3209204
https://doi.org/10.1007/978-3-032-07106-4_5
https://doi.org/10.1007/978-3-032-07106-4%5C_5
https://doi.org/10.1145/3643737
https://doi.org/10.1145/3643737

	Linear Temporal Logic
	Temporal Logic based Formal Methods
	Specifying and Verifying Future Conditions
	Detecting Use-after-free
	Detecting Null-pointer Dereference
	Specification Inference & Interprocedural Analysis (NPD, Memory Leak)

	Summary and Possibilities
	Odkazy

