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Linear Temporal Property (LTL)

LTL formulas:

Φ ::= ⊥ | ap | Φ1 ∧ Φ2 | ¬Φ | X Φ | Φ1 U Φ2 | F Φ | G Φ

▶ ap : atomic proposition, eg., v≥0
▶ X (NeX t) : Φ is true at next step
▶ U (Until) : Φ1 is always true until Φ2 becomes true
▶ F (F inally) : Φ is eventually true
▶ G (G lobally) : Φ is always true
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Linear Temporal Property (LTL)
LTL formulas:

Φ ::= ⊥ | ap | Φ1 ∧ Φ2 | ¬Φ | X Φ | Φ1 U Φ2 | F Φ | G Φ

Evaluate LTL propositions over a sequence of states:
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Linear Temporal Property (LTL)

LTL formulas:

Φ ::= ⊥ | ap | Φ1 ∧ Φ2 | ¬Φ | X Φ | Φ1 U Φ2 | F Φ | G Φ

Temporal Specifications:

▶ Liveness: "Traffic light is green infinitely
often" ▷ G(Fgreen)

▶ Ordering: "Once red, the light cannot become
green immediately" ▷ red → ¬(X green)

▶ Responsiveness: "Every request will eventually
lead to a response" ▷ G(request → Fresponse)
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Temporal Logic-based Formal Methods
LTL formulas:
Φ ::= ⊥ | ap | Φ1 ∧ Φ2 | ¬Φ | X Φ | Φ1 U Φ2 | F Φ | G Φ

Regular Expressions:
Φ ::= ⊥ | ϵ | _ | event | Φ1 · Φ2 | Φ1 ∨ Φ2 | ¬Φ | Φ⋆

In formal methods, both LTL and regular expressions are used to specify
temporal properties. The language inclusion problem (A ⊑ B) is
decidable for both formalisms. [1][3] [2]
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Term Rewriting Regular Expressions

▶ Deciding the inclusion of regular expressions (A ⊑ B)
▶ Flexible specifications, which can be combined with other logic
▶ Efficient entailment checker with inductive proofs.
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Post Conditions vs. Future Conditions
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Future Conditions

Preventing memory leak, double-free and use-after-free
void * malloc ( size_t size);
// pre: size>0 ∧ _⋆

// post: (res=null ∧ ϵ) ∨ (res̸=null ∧ malloc(res))
// future: (res=null ∧ _⋆) ∨ (res̸=null ∧ F free(res))

void free (void *ptr);
// pre: true ∧ _⋆

// post: true ∧ free(ptr)
// future: true ∧ G !_(ptr)

Preventing null-pointer dereference
(void) *ptr = v;
// pre: ∃ ptr. true
// post: true ∧ deref(ptr)
// future: (v=null ∧ G !_(ptr)) ∨ (v̸=null ∧ _⋆)
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Detecting Use-after-free
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Detecting Null-pointer Dereference
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Specification Inference
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Interprocedural Analysis
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Summary and Possibilities

Main Contribution

▶ Compositional static analyzer via temporal properties
▶ Novel future-condition
▶ Specification Inference

Several aspects remain open for future work...

▶ Higher-order programs (Callbacks)
▶ OOP
▶ Buffer Overflow
▶ Machine checkable verification results (Rocq)
▶ ...

Thank you for listening!
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