
Linear Temporal Logic &
Specifying and Verifying Future Conditions

Yahui Song

Standard Chartered Bank @ Singapore

05 Feb 2026

1 / 16

Content

Linear Temporal Logic

Temporal Logic based Formal Methods

Specifying and Verifying Future Conditions
Detecting Use-after-free
Detecting Null-pointer Dereference
Specification Inference & Interprocedural Analysis
(NPD, Memory Leak)

Summary and Possibilities

2 / 16

Linear Temporal Property (LTL)

LTL formulas:

Φ ::= ⊥ | ap | Φ1 ∧ Φ2 | ¬Φ | X Φ | Φ1 U Φ2 | F Φ | G Φ

▶ ap : atomic proposition, eg., v≥0
▶ X (NeX t) : Φ is true at next step
▶ U (Until) : Φ1 is always true until Φ2 becomes true
▶ F (F inally) : Φ is eventually true
▶ G (G lobally) : Φ is always true

3 / 16

Linear Temporal Property (LTL)
LTL formulas:

Φ ::= ⊥ | ap | Φ1 ∧ Φ2 | ¬Φ | X Φ | Φ1 U Φ2 | F Φ | G Φ

Evaluate LTL propositions over a sequence of states:

4 / 16

Linear Temporal Property (LTL)

LTL formulas:

Φ ::= ⊥ | ap | Φ1 ∧ Φ2 | ¬Φ | X Φ | Φ1 U Φ2 | F Φ | G Φ

Temporal Specifications:

▶ Liveness: "Traffic light is green infinitely
often" ▷ G(Fgreen)

▶ Ordering: "Once red, the light cannot become
green immediately" ▷ red → ¬(X green)

▶ Responsiveness: "Every request will eventually
lead to a response" ▷ G(request → Fresponse)

5 / 16

Temporal Logic-based Formal Methods
LTL formulas:
Φ ::= ⊥ | ap | Φ1 ∧ Φ2 | ¬Φ | X Φ | Φ1 U Φ2 | F Φ | G Φ

Regular Expressions:
Φ ::= ⊥ | ϵ | _ | event | Φ1 · Φ2 | Φ1 ∨ Φ2 | ¬Φ | Φ⋆

In formal methods, both LTL and regular expressions are used to specify
temporal properties. The language inclusion problem (A ⊑ B) is
decidable for both formalisms. [1][3] [2]

6 / 16

Temporal Logic-based Formal Methods
LTL formulas:
Φ ::= ⊥ | ap | Φ1 ∧ Φ2 | ¬Φ | X Φ | Φ1 U Φ2 | F Φ | G Φ

Regular Expressions:
Φ ::= ⊥ | ϵ | _ | event | Φ1 · Φ2 | Φ1 ∨ Φ2 | ¬Φ | Φ⋆

In formal methods, both LTL and regular expressions are used to specify
temporal properties. The language inclusion problem (A ⊑ B) is
decidable for both formalisms. [1][3] [2]

7 / 16

Term Rewriting Regular Expressions

▶ Deciding the inclusion of regular expressions (A ⊑ B)
▶ Flexible specifications, which can be combined with other logic
▶ Efficient entailment checker with inductive proofs.

8 / 16

Post Conditions vs. Future Conditions

9 / 16

Future Conditions

Preventing memory leak, double-free and use-after-free
void * malloc (size_t size);
// pre: size>0 ∧ _⋆

// post: (res=null ∧ ϵ) ∨ (res̸=null ∧ malloc(res))
// future: (res=null ∧ _⋆) ∨ (res̸=null ∧ F free(res))

void free (void *ptr);
// pre: true ∧ _⋆

// post: true ∧ free(ptr)
// future: true ∧ G !_(ptr)

Preventing null-pointer dereference
(void) *ptr = v;
// pre: ∃ ptr. true
// post: true ∧ deref(ptr)
// future: (v=null ∧ G !_(ptr)) ∨ (v̸=null ∧ _⋆)

10 / 16

Detecting Use-after-free

11 / 16

Detecting Null-pointer Dereference

12 / 16

Specification Inference

13 / 16

Interprocedural Analysis

14 / 16

Summary and Possibilities

Main Contribution

▶ Compositional static analyzer via temporal properties
▶ Novel future-condition
▶ Specification Inference

Several aspects remain open for future work...

▶ Higher-order programs (Callbacks)
▶ OOP
▶ Buffer Overflow
▶ Machine checkable verification results (Rocq)
▶ ...

Thank you for listening!

15 / 16

References

[1] Yoji Nanjo et al. “A Fixpoint
Logic and Dependent Effects for Temporal Property Verification”. In:
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018.
Ed. Anuj Dawar a Erich Grädel. ACM, 2018, s. 759–768. doi:
10.1145/3209108.3209204. url:
https://doi.org/10.1145/3209108.3209204.

[2] Yahui Song, Darius Foo a Wei-Ngan Chin. “Specifying and
Verifying Future Conditions”. In:
Static Analysis - 32nd International Symposium, SAS 2025, Singapore, October 13-14, 2025, Proceedings.
Ed. Hakjoo Oh a Yulei Sui. Sv. 16100. Lecture Notes in Computer
Science. Springer, 2025, s. 90–112. doi:
10.1007/978-3-032-07106-4_5. url:
https://doi.org/10.1007/978-3-032-07106-4%5C_5.

[3] Yahui Song et al. “ProveNFix: Temporal Property-Guided Program
Repair”. In: Proc. ACM Softw. Eng. 1.FSE (2024), s. 226–248. doi:
10.1145/3643737. url: https://doi.org/10.1145/3643737.

16 / 16

https://doi.org/10.1145/3209108.3209204
https://doi.org/10.1145/3209108.3209204
https://doi.org/10.1007/978-3-032-07106-4_5
https://doi.org/10.1007/978-3-032-07106-4%5C_5
https://doi.org/10.1145/3643737
https://doi.org/10.1145/3643737

	Linear Temporal Logic
	Temporal Logic based Formal Methods
	Specifying and Verifying Future Conditions
	Detecting Use-after-free
	Detecting Null-pointer Dereference
	Specification Inference & Interprocedural Analysis (NPD, Memory Leak)

	Summary and Possibilities
	Odkazy

