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Abstract5

To make reactive programming more concise and expressive, it is promising to combine two approaches6

to concurrency that integrates synchronous preemption with asynchronous promises. Existing7

temporal verification techniques have not been designed to handle such a marriage of two execution8

models. This work presents a solution that integrates a modular Hoare-style forward verifier with a9

novel term rewriting system (TRS) on (A)Synchronous Effects (ASyncEffs). We use the full-featured10

Esterel as our target language, generalizing the preemptive asynchronous abstraction. We propose11

ASyncEffs, a new effect logic that extends Synchronous Kleene Algebra with a waiting operator.12

We establish an effect system for preemptive and asynchronous primitives. Lastly, we present a13

purely algebraic TRS to efficiently check language inclusions between ASyncEffs. We prototype the14

verification system, prove its correctness, and report case studies and experimental results.15

2012 ACM Subject Classification Theory of computation → Semantics and reasoning; Security and16

privacy → Logic and verification17

Keywords and phrases Synchronous Preemption, Asynchronous Promises, Hoare-style Temporal18

Verification,Term Rewriting System19

Digital Object Identifier 10.4230/LIPIcs...20

1 Introduction21

Synchronous programming [1] has found success in many safety-critical applications, such as22

fly-by-wire systems and nuclear power plant control software1. It exhibits a high concurrency23

but calls for deterministic and predictable execution, which has been considered a clean24

formalism for modeling, specifying, validating, and implementing reactive systems. Languages25

based on this paradigm – such as Esterel [3], Lustre [4] and Signal [5] – assume that time26

is partitioned into discrete instants (or reactions) and the computation/communication for27

processing all events that occur within one time instant happen instantaneously.28

Many mainstream languages, such as C#, Java, JavaScript, and Python, have recently29

added support for asynchronous promises, also known as futures or tasks [6]. These features30

support basic asynchronous operators, such as yield pauses/resumes generator functions31

asynchronously; async/await simplify the blending of asynchronous executions into sequential32

programming. However, most these languages offer a small set of preemption primitives,33

often inadequate for concisely modeling interruptions or control-driven computations.34

To make reactive programming more concise and expressive, recent innovations are35

dedicated to integrating synchronous features to asynchronous infrastructures. For example:36

the language HipHop.js [7] is a mixture of JavaScript and Esterel for reactive web applications,37

which facilitates JavaScript with preemptions like every and abort; the Scala library ZIO [8]38

is for type-safe asynchronous and concurrent programming with rudimentary preemptive39

operators, such as fiber interruption and racing; similarly, Microsoft’s durable function [9]40

1 Concretely, it has been used in the creation and verification of fuel control systems; landing gear control
functions; virtual display systems at Dassault Aviation [2]; the control software of the N4 nuclear power
plants; the Airbus A320 fly-by-wire system; and the specification of part of Texas Instrument’s digital
signal processors [1].
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deploys blended asynchrony/synchrony, including pause, parallel composition for deterministic41

orchestration functions, which is available as libraries for C#, JavaScript, Python, etc.42

There is a growing need to reason about such asynchronous reactive programs with43

multifarious preemptions. In particular, we are interested in the techniques for specifying44

and verifying temporal behaviors of such a mixed execution model, which has not been45

extensively studied. Therefore, this paper studies the challenges of synchronous preemptions46

and asynchronous promises and attempts to provide a practical solution accordingly.47

1 module Main (in login , inout connected , out connState ){
2 par{ Identity (...)} // enables the login button
3 {every (login) { // implements a preemptive loop
4 Authenticate (...); // preempts the previous Session
5 present ( connected ){ Session (...)} // then branch
6 {emit connState ("err")}}}}// else ...

Figure 1 A preemptive program written in Esterel, for a simple web login procedure, from [7].

The power of preemption appears in Figure 1. Module Main makes use of three submodules:48

Identity reads the GUI and enables the login button when the input username and passwords49

are both longer than two characters; Authenticate calls the authorization service and output50

the signal connected when authorized; Session establishes an active communication session51

between the authorized user and the server.52

Statement par{...}{...} (in lines 2 and 3) runs branches in parallel. The signal login53

is present when the login button is pressed in the first thread. Then the presence of login54

makes the every statement restart the sequence of tasks (in lines 4-6), so the current session is55

preempted and Authenticate begins execution. When Authenticate terminates, the status56

of connected is tested (in line 5). If present, Session starts running a new session until the57

next time the login button is pressed. When Session terminates, the every(login){...}58

statement merely waits for a new login. If after Authenticate, the status of connected is59

absent, then the output signal connState is emitted with an error message.60

Although simple, Figure 1 shows that preemption statements allow a clean, hierarchical61

description of temporal behaviors. While flexible and expressive, preemption primitives62

have fairly complex semantics, which in turn, makes reasoning difficult. In this paper, we63

study the subtle operational semantics of various preemptions, including: interrupt; abort;64

suspend; every; and the label-based escape. Furthermore, we show that our approach supports65

a comprehensive foundation for verifying preemptions with different keywords, including66

strong or weak, immediate or delayed.67

With asynchronous promises, we can perform long-lasting tasks without blocking the68

main thread. The keywords async and await allow sequential-style code to capture concurrent69

executions with explicit dependencies via asynchronous signals succinctly. However, promises70

are complex and error-prone in their own right. Prior works [10, 11] display a set of broken71

promises chain anti-patterns shown in asynchronous JavaScript, and propose to detect the72

anti-patterns by constructing a promise dependency graph. In this paper, we focus on the73

async/await related anti-pattern, where unreachable promises may have registered reactions74

that will never be executed. Different from prior works, we show that our purely algebraic75

approach detects such unreachable promises without any constructions of graphs.76

This work achieves a modular verification - where modules can be replaced by their77

already verified properties - for preemptive and asynchronous programs. We propose to use78
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ASyncEffs to be the temporal specification language and deploy a compositional verification79

strategy via a forward verifier and a term rewriting system (TRS). Specifically, ASyncEffs80

enrich the Synchronous Kleene Algebra (SKA) [12, 13] with a new operator to add the81

abstraction for "block waiting across threads" into classic linear temporal verification.82

This work is a significant extension of [14], which solely targeted the temporal verification83

for a subset of Esterel without preemptions or asynchronous primitives. This work inherits84

the verification framework proposed in [14] but tackles challenges for the full-featured Esterel.85

Our main contributions are:86

1. Language Abstraction: we formally define the operational semantics for the full-87

featured Esterel and use it to generalize the preemptive asynchronous execution model.88

2. Specification Logic: we propose ASyncEffs, by defining its syntax and semantics. We89

show that ASyncEffs subsume the expressiveness power of classic linear temporal logics.90

3. Forward Verifier: we establish a Hoare-style forward verifier, which is an effect system91

(or axiomatic semantics per se) to reason the temporal behaviors of target programs. It92

deploys a TRS to check the actual behaviors against their annotated specifications.93

4. An Efficient TRS: we present rewriting rules to prove/disprove the entailments between94

ASyncEffs. The TRS is a back-end solver deployed by the front-end forward verifier.95

5. Implementation and Evaluation: we prototype our proposal, validate our implement-96

ation, prove the correctness, and report on case studies and experimental results.97

2 Overview98

Figure 2 System Overview.

An overview of our automated verification99

system is given in Figure 2. The system100

consists of a forward verifier and a TRS,101

shown in the rounded boxes. The inputs of102

the forward verifier are target programs an-103

notated with temporal specifications written104

in ASyncEffs. The inputs of the TRS are105

pairs of effects, LHS and RHS, referring to106

the inclusion LHS v RHS2 to be checked107

(LHS and RHS refer to left-hand-side effects108

and right-hand-side effects respectively). The109

forward verifier calls the TRS to solve trace-110

based proof obligations for assertions. The TRS can also be used as a solver independently111

in its rights. We now highlight our primary methodology using examples.112

2.1 Target Programs and ASyncEffs113

Specifications are annotated in /*@...@*/ for each module, which leads to a compositional114

verification strategy, where temporal verification can be done locally. ASyncEffs use curly115

braces {} to enclose each logical-time instant (reaction). A time instant is a set of signals116

with status happening conceptually simultaneously.117

As shown in Figure 3, module Read asynchronously loads and processes a JSON file. In118

line 4, the statement async is enriched with a completion signal, here loaded. When started,119

2 We formally define the ASyncEffs inclusion relation v in Definition 4.
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async immediately emits loading, and calls fs.readFile, that is expected to take time in120

terms of reactions, i.e., not to complete during the current reaction. Statement async forks121

a new thread to execute its body and thus does not block the main execution. Therefore122

in line 7, the program can do other computations (i.e., compOther) while loading the file.123

In line 8, the program waits for the signal loaded to be emitted, i.e., to synchronize with124

the child thread spawned by async. Then, it does data processing by emitting logData and125

waits for the environment to close the file.126

1 module Read (in open, close, out loading, loaded, compOther, logData)
2 /*@ requires {}^*.{open} @*/
3 /*@ ensures {loading,compOther}.{loaded}.{logData}.close? @*/ {
4 async loaded { //"loaded" is emitted after the body is completed
5 emit loading;
6 fs.readFile(open.value);}
7 emit compOther; //do things that do not depend on the loading file
8 await loaded; //block waiting for the signal "loaded" to be emitted
9 emit logData; //data processing and logging

10 await close; }
11

12 module Main (out open, close, loading, loaded, compOther, logData)
13 /*@ requires {} @*/
14 /*@ ensures {open}.{}^*.{close} @*/ {
15 emit open("filePath");
16 par { Read (open, close, loading, loaded, compOther, logData); }
17 { await logData; //await for the signal "logData" to be emitted
18 emit close("filePath"); }} //close the file

Figure 3 Asynchronously reading a file, using async/await in Esterel.

Module Read’s precondition {}? · {open} requires that when Read is called, the signal127

open should be emitted in the latest reaction, indicating that the file is opened before the128

current method call3. Module Main firstly opens the file then creates two child threads129

via a par statement. The first thread calls Read, while another thread waits for the data130

processing to be done and closes the file. Note that ASyncEffs is an affine logic that only131

describes the signals we are concerned about, regardless of the non-mentioned signals.132

2.2 Forward Verification133

To reason about program implementations, we deploy a Hoare-style forward verifier. Given a134

statement p and the current program state 〈Φ〉, we compute p’s effects by transforming the135

program states, based on the forward rules defined in Sec. 4. We use Φ to denote ASyncEffs136

formulae (defined in Figure 8). Next, we use Figure 4 to demonstrate the verification for137

module Read. To facilitate this illustration, we mark the deployed forward rules in [gray].138

At the beginning of the verification, state (1) is initialized with an empty instant. States139

(2)(4)(6) are obtained by the rule [FV-Emit], which adds the emitted signal to the latest140

3 We support parameterized signals, so this abstraction works for manipulating multiple files as well.
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module Read (in open, close, out loading, loaded, compOther, logData){

(1) 〈{}〉 (– initialize the current effects using an empty instant –)
async loaded {

emit loading; fs.readFile(open.value);

(2) 〈{loading}〉 [FV-Emit]
} 〈{loading} · {loaded}〉 [FV-Async]

(3) 〈{}〉 (– inherited from state (1), because statement async is non-blocking –)
emit compOther;

(4) 〈{compOther}〉 [FV-Emit]
await loaded;

(5) 〈{compOther} · loaded?〉 [FV-Await]
emit logData;

(6) 〈{compOther} · loaded? · {logData}〉 [FV-Emit]
await close; }

(7) 〈{compOther} · loaded? · {logData} · close?〉 [FV-Await]
(8) 〈({loading} · {loaded}) || ({compOther} · loaded? · {logData} · close?)〉 [FV-Async]

Φfinal=〈{loading, compOther} · {loaded} · {logData} · close?〉 [Effects-Parallel-Merge]
(9) Φfinal v ΦRead

post [FV-Decl] (-TRS: check the postcondition of Read; Succeed. -)

Figure 4 A demonstration of the forward verification for the module Read.

instant. States (5)(7) are obtained by the rule [FV-Await], which concatenates a blocking141

signal (with a question mark) to the current effects. Since the async statement is non-blocking142

and forks a new thread, state (3) is the same as the state (1). Step (8) parallel composes the143

effects from the async thread and the main thread and normalizes the final effects. After144

these state transformations, step (9) invokes the TRS to check the postcondition. Besides,145

before each function call, the verifier invokes the TRS to check whether the current effect146

state satisfies the precondition of the callee, cf. [FV-Call].147

Case Study I: Detecting Unreachable Promises.148

Having the actual program behavior expressed in ASyncEffs, and the parallel merge algorithm149

(defined in Sec. 4.1) to eliminate the waiting operators as much as possible based on the150

local environment, we can easily capture the unreachable promises via a lexical checking for151

ASyncEffs. For example, in step (8), the final trace contains a dangling waiting for the signal152

close because there is no locally emitted close.153

I Definition 1 (Well-Synchronized Effects). After parallel merging, we call effects without any154

waiting operators well-synchronized effects. Given any effect Φ, well(Φ) returns a Boolean155

value, defined recursively:156

well(⊥)=well(ε)=well(I ) = false well(S?) = true well(Φ?) = well(Φ)157

well(Φ1 · Φ2 )=well(Φ1 ∨ Φ2 )=well(Φ1 ||Φ2 ) = well(Φ1 ) ∨ well(Φ2 )158
159

Definition 1 defines well-synchronized effects. Any not well-synchronized effects indicates160

the existence of registered reactions for unreachable promises. However, not well-synchronized161

effects can be further parallel composed to other threads, i.e., a bigger context, and become162
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well-synchronized. For example, the final effects of module Main is well-synchronized after163

parallel composing module Read with another thread, shown in Appendix A at step (16).164

2.3 The TRS165

Having ASyncEffs to be the specification language, we are interested in the following166

verification problem: Given a program P, and a temporal property Φ′, does ΦP v Φ′ hold?167

In a typical verification context, checking the inclusion between the actual program effects168

ΦP and the valid traces Φ′ proves that: the program P will never lead to unsafe traces which169

violate Φ′.170

We deploy a purely algebraic term rewriting system (TRS), to check language inclusions171

between ASyncEffs. Our TRS is inspired by Antimirov and Mosses’s algorithm [15], whose172

rewriting system decides inequalities of regular expressions (REs) through an iterated process173

of checking the inequalities of their partial derivatives [16], as defined in Definition 2. There174

are two basic rules: [Disprove], which infers false from trivially inconsistent inequalities; and175

[Unfold], which applies Definition 3 to recursively generate new inequalities.176

I Definition 2 (Partial Derivatives). Given any formal language L over an alphabet Σ and177

any alphabet a ∈ Σ, the partial derivative of L with respect to a is defined as:178

a-1L={w ∈ Σ∗ | aw ∈ L}.179

I Definition 3 (REs Inequality). For two REs r and s, r � s ⇔ ∀(A ∈ Σ). A-1 (r) � A-1 (s).180

I Definition 4 (ASyncEffs Inclusion). For two ASyncEffs Φ1 , Φ2 ,181

Φ1 v Φ2 ⇔ ∀I . I -1 (Φ1 ) v I -1 (Φ2 ).182

Similarly, we defined Definition 4 for ASyncEffs’ inclusion relation, where I -1 (Φ) is the183

partial derivative of Φ w.r.t the instant I . Termination of the rewriting is guaranteed because184

the sets of alphabets and derivatives to be considered are finite, and possible cycles are185

detected using memorization [17].186

We use Table 1 to illustrate the rewriting system, which proves that {A} · {C} · B? · {D}187

entails {A} · B? · {D}. We define "waiting for the signal B" as: B? ≡ ∃n,n≥0 ∧ {B}n · {B},188

where {B} refers to the instants containing B to be absent. Therefore intuitively {C} · B? is a189

special case of B?.190

Table 1 A demonstration of rewriting ASyncEffs inclusions with waiting operators.

ε v ε
5©[Prove]

��{D} v ��{D} ∨ ⊥
4©

��{B} · {D} v (��{B} · {D}) ∨ (�
�{B} ·B? · {D})

B? · {D} v B? · {D} (‡)
7©[Reoccur]

B? · {D} v ⊥ ∨ (B? · {D})
6©

�
�{B} ·B? · {D} v (��{B} · {D}) ∨ (�

�{B} ·B? · {D})
3©

B? · {D} v ⊥ ∨ (B? · {D}) (‡)
2©[Unfold]

��{C} ·B? · {D} v (��{B} · {D}) ∨ (�
�{B} ·B? · {D})

1©[Unfold]
��{A} · {C} ·B? · {D} v ��{A} ·B? · {D}

Steps 1© 2© 4© 6© unfolds the inclusions by eliminating the first instants from both sides.191

Step 3© observes a disjunction on the left-hand side (because B? · {D} is a shorthand for192

({B} · {D}) ∨ ({B} · B? · {D})), thus creates two sub-trees, and the original inclusion is proved193

only when both branches succeed. The first sub-tree is proved at step 5© by the frame194

rule. The second sub-tree is proved by the reoccur rule, at step 7© where we observe the195

proposition is isomorphic with one of the previous step (before 3©), marked with (‡).196
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3 Language and Specifications197

3.1 The Target Language198

Prior works [18, 14] on program analysis for Esterel tend to focus on the perfect synchrony4199

perspective in Esterel, without dedicated reasoning for asynchronous concurrency or preemp-200

tions. We argue that our work cannot be subsumed by prior works, because of the additional201

modeling for block waiting, which is essential for both asynchronous concurrency and pree-202

mptions. We summarize a full-featured Esterel in Figure 5 to be our target language, which203

provides the infrastructure for the preemptive asynchronous abstraction. The statements204

marked as purple are generalized from the preemptive statements in (reactive) synchronous205

programming, while the statements marked as blue provide the async/await constructs for206

asynchronous programming.207

(Program) P ::=
−−−→
meth

(Signal Types) τ ::= in | out | inout
(Module Def .) meth ::= mn (

−−−−→
τ S(x)) 〈req Φpre ens Φpost〉 p

(Values) v ::= () | i | b | x
(Parametrized Signal) S ::= S(v)
(Statements) p, q ::= v | yield | emit S | p; q | p||q | call mn (−→S )

| loop p | present S then p else q | async S p q | await [κ1 ] S
| trap p | exit[κ2 ] d | [κ2 ] abort p S | [κ2 ] suspend p S

(Preemption Keywords) κ1 ::= immediate | delayed κ2 ::= weak | strong

(Signal Variables)S ∈ Σ i ∈ Z b ∈ B mn, x ∈ var (Depth)d∈ N∪{0}

Figure 5 Syntax of the target language.

Here, S, x are meta-variables ranging over signal variables and constants. Signal types208

are: in for input signals, out for output signals and inout for both. var represents the209

countably infinite set of arbitrary distinct identifiers. A program P comprises a list of module210

definitions
−−−→
meth5. Each module has a name mn, a list of well-typed arguments

−−−−→
τ S(x), a211

statement-oriented body p, associated with a precondition Φpre and a postcondition Φpost.212

We here present the intuitive semantics of the basic statements.213

A thread of execution suspends itself for the current instant using the yield construct214

and resumes when the next instant started6. Statement emit S broadcasts the signal S to215

be present. The emission of S is valid for the current instant only. The sequence statement216

p; q starts p and instantaneously passes the control flow to q when p terminates. Statement217

q is never started if p always yields. Parallel statement p||q runs p and q in parallel. The218

branches can terminate in different instants, and the parallel statement waits for the last one219

to terminate. Statement call mn (−→S ) is a call to module mn, providing the list of IO signals.220

Statement present S p q immediately starts p if S is present in the latest instant; otherwise221

it starts q instead. Statement loop p implements an infinite loop of executing p.222

4 Perfect synchrony is a high-level language abstraction where all reactions of a system are executed in
(conceptually) zero time. Hence, outputs are generated simultaneously when the inputs are read.

5 Here, we use the −→ script to denote a finite vector (possibly empty) of items.
6 For a better cooperative multitasking [19], processes voluntarily yield control periodically or when idle
or logically blocked.
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Keywords immediate and delayed are for await statements, indicating to wait for a signal223

from the latest instant or the next instant, respectively. Keywords weak or strong are for224

preemptive statements, indicating to allow or not allow, respectively, the latest instant to225

execute when the preemption condition is met. In this work, we use the most commonly used226

immediate waiting and weak preemptions by default, with discussions on how to cooperate227

with the delayed waiting and strong preemptions in detail.228

3.2 Structural Operational Semantics of the Target Language229

Figure 6 provides the operational semantics of the preemptive and promise-related statements230

and leaves the rest standard semantics rules in Appendix B.231

The reduction rules are in the form of p
α,k−−→
E

p′, meaning that a process p performs an232

action α then becomes a process p′ with a completion code k. E stands for all the signals233

produced at the instant by the whole program of which p is part, which gives the global234

information about the presence and absence of signals. In particular, α ⊆ E . The completion235

code k is a non-negative integer: when k=0 , the reduction completes without exits or yields;236

when k=1 , the reduction completes without exits but with a yield, i.e., starting a new237

instant; when k=2 , the reduction completes with an exit that escapes the nearest trap; when238

k>2 , the reduction completes with an exit which escapes a further enclosing trap. Such an239

encoding for preemptions was first advocated by Gonthier in [20].240

Statement async S p q is a syntactic sugar which spawns a long-lasting background241

computation for p, which will join back to the main thread later. It essentially performs p242

and q in parallel, and emits S when p completes, i.e., (p; yield; emit S)||q. Statement await S243

blocks the local thread and waits for S to be emitted in the environment.

(S 7→ present) ∈ E

await S ∅,1−−→
E

()
[Await-1]

(S 7→ present) 6∈ E

await S ∅,1−−→
E

await S
[Await-2]

exit d ∅,d+2−−−−→
E

()
[Exit]

p
α,k−−→
E

p′ (k≤1)

trap p α,k−−→
E

trap p′
[Trap-1]

p
α,k−−→
E

p′ (k=2)

trap p α,0−−→
E

()
[Trap-2]

p
α,k−−→
E

p′ (k>2)

trap p α,k-1−−−→
E

p′
[Trap-3]

(S7→present) ∈ E

abort p S ∅,0−−→
E

()
[Abort-1]

(S7→present) 6∈ E p
α,k−−→
E

p′

abort p S α,k−−→
E

abort p′ S
[Abort-2]

[Abort-3]

abort () S ∅,0−−→
E

()

[Suspend-1]
(S7→present) ∈ E

suspend p S ∅,1−−→
E

suspend p S

[Suspend-2]
(S7→present) 6∈ E p

α,k−−→
E

p′

suspend p S α,k−−→
E

suspend p′ S

[Suspend-3]

suspend () S ∅,0−−→
E

()

[Par-Base-0]
p
α,0−−→
E

p′

p||q α,0−−→
E

p′||q

[Par-Base-1]
p
α1,1−−−→
E

p′ q
α2,1−−−→
E

q′

p||q α1∪α2 ,1−−−−−→
E

p′||q′

[Par-Preemption]
p
α1,k1−−−→
E

p′ q
α2,k2−−−→
E

q′ (max(k1, k2)>1)

p||q α1∪α2 ,max(k1 ,k2 )−−−−−−−−−−−−→
E

()

Figure 6 Operational semantics of promise-related and preemptive statements in Esterel.

244
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We omit the labeling of the traps but use the exact depth value to refer to the nested245

level of trap statements. Statement exit d instantaneously exits the trap with depth d. For246

example, when d=0 , the execution exits the nearest trap; when d=1 , the execution exits247

one outer layer of trap; and so on. Statement trap p installs a trap and behaves like p until248

any exit occurs. Statement abort p S performs p and terminates when S occurs. Statement249

suspend p S suspends p for one instant whenever S is present in the environment and resumes250

p from the successive instants.251

The rules for parallel statements execute the branches independently, then merge their252

output events accordingly. If one branch exits with code k, then both threads are preempted253

with the exception depth k. If both statements exit distinct traps with k1 and k2 in the254

same instant, then the execution exits with the larger value.255

Case Study II: Derived Statements.256

(1) halt , loop (yield)

(2) loop p each S , loop (abort (p;halt) S)

(3) every S p , await S; (loop p each S)

(4) await [delayed] S , yield; await S

Figure 7 Expansion of derived preemptions.

Figure 7 shows how to construct the derived257

statements [21] via the primitives. In par-258

ticular, every S p implements a preemptive259

loop that checks the presence of S. An every260

loop starts its body when S is present; and261

whenever S is present again in some fur-262

ther instants, it kills the current execution263

instantly and restarts a new iteration. Be-264

sides, await [delayed] S implements a delayed waiting, which starts as early as the next265

instant, as opposite to the default immediate waiting.266

3.3 An Effect Logic for the Temporal Specification, ASyncEffs267

(Effects) Φ ::= ⊥ | ε | I | S? | Φ1 · Φ2 | Φ1 ∨ Φ2 | Φ1 ||Φ2 | Φ?
(Instant) I ::= {} | {S 7→ α} | I1 ∪ I2

(Parametrized Signal) S ::= S(v)
(Signal Statuses) α ::= present | absent | undef

(Signal Variables)S ∈ Σ (Values)v (Waiting)? (Kleene Star)?

Figure 8 Syntax of the ASyncEffs.

As shown in Figure 8, ASyncEffs comprise false (⊥); the empty trace ε; the singleton268

instant I ; waiting for a parametrized signal S?; trace concatenation Φ1 · Φ2 ; trace disjunc-269

tion Φ1 ∨ Φ2 ; synchronous parallelism Φ1 ||Φ2 . ASyncEffs can also be constructed by ?,270

representing zero or more times of repetition of a trace. There are three possible statuses for271

a signal: present, absent and undefined. The default status of signals in a new instant is272

undefined. An instant I is a set of mappings from signals to their statuses; and instants can273

be empty sets {}, indicating no signal constraints for the instant.274

3.4 Semantics of ASyncEffs275

To define the semantic model, we use ϕ (a trace of instants) to represent the concrete276

computation execution. Let ϕ |= Φ denote the model relation, i.e., the execution trace ϕ277

satisfies the temporal effects Φ, with ϕ from the following concrete domain: ϕ , list(I ).278
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ϕ |= ε iff ϕ = []

ϕ |= I iff ϕ = [I ]

ϕ |= S? iff ∃n≥0. ϕ={S}n++[{S}]

ϕ |= Φ1 · Φ2 iff ∃ϕ1 , ϕ2 , ϕ=ϕ1 ++ϕ2 such

that ϕ1 |=Φ1 and ϕ2 |=Φ2

ϕ |= Φ1 ∨ Φ2 iff ϕ |= Φ1 or ϕ |= Φ2

ϕ |= Φ1 ||Φ2 iff ϕ |= Φ1 and ϕ |= Φ2

ϕ |= Φ? iff ϕ |= ε or ϕ |= (Φ · Φ?)

ϕ |= ⊥ iff false

Figure 9 Semantics of the ASyncEffs Logic.

Figure 9 defines the semantics of279

ASyncEffs. [] represents an empty trace;280

++ appends two traces; [I ] represents a281

singleton trace contains one instant I .282

Here I is a set of mappings from signals283

to statuses. We use {S} and {S} to short-284

hand {S 7→ present} and {S 7→ absent}285

respectively. The pairings shown in one286

instant represent the minimal set of con-287

straints for signals that are required/guar-288

anteed to be true. Any instant contains289

contradictions, such as {S,S}, will lead290

to false, as the signal S can not be both291

present and absent in the same instant.292

Case Study III: Expressiveness of ASyncEffs.293

As shown in Table 2, we are able to recursively encode event-based LTL operators into294

ASyncEffs, making it more intuitive and readable, mainly when nested operators occur. By295

putting effects in the postcondition, they restrict future traces; whereas in the precondition,296

they naturally encode past-time temporal specifications. The basic modal operators are: �297

for "globally"; ♦ for "finally";© for "next"; U for "until", and their past time reversed versions:298 ←−
� ;
←−
♦ ; and 	 for "previous"; S for "since". Besides, the implication operator is expressed as299

A→ B ≡ {A} ∨ {A,B}. Apart from the high compatibility with standard first-order logic,300

ASyncEffs make the temporal verification more flexible to incorporate with other logics.301

Table 2 Examples for converting LTL formulae into Effects. ({A}, {B} represent different
instants which contain signal A and B to be present.)

Φpost �A ≡ {A}? ♦A ≡ {A}? · {A} ©A ≡ {} · {A} A U B ≡ {A}? · {B}

Φpre
←−
�A ≡ {A}? ←−

♦A ≡ {A} · {A}? 	A ≡ {A} · {} A S B ≡ {B} · {A}?

4 Automated Forward Verification302

Here, we present the forward rules, i.e., an axiomatic semantics model for the target language.303

These rules transfer program states and accumulate the effects syntactically. To define the304

rules, we introduce an environment E and the single program state (h, k), where h represents305

the trace of history; k is the completion code. Concretely: E ,
−−−−→
(S7→α), h , Φ, k ∈ N∪{0}.306

The forward rules are in the form: E ` 〈H,K〉 p 〈H ′,K ′〉, where p is the given statement;307

〈H ,K 〉 refers to a set of disjunctive program states, i.e.,
−−−→
(h, k). The meaning of the transition308

rules can be described as follows:309

〈H ′,K ′〉 =
⋃|〈H ,K〉|-1

i=0 〈H ′i ,K ′i 〉 where E ` 〈hi , ki〉 p 〈H ′i ,K ′i 〉.

[FV -Value] obtains the next state by inheriting the current state. [FV -Emit] extents310

the latest instant with S being present (the notation + unions two instants). [FV -Yield]311

concatenates an empty instant to the tail of the history trace. [FV -Seq] computes p’s effects312

first, and if the completion code K1≤1 , i.e., there are no exits, then continuously computes313

the effects of q; otherwise, it discards q and propagates 〈H1 ,K1 〉 directly.314
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[FV -Value]

E ` 〈h, k〉 v 〈h, k〉

[FV -Emit]

E ` 〈h · I , k〉 emit S 〈h · (I +{S}), k〉

[FV -Yield]

E ` 〈h, k〉 yield 〈h · {}, k〉315

E ` 〈h, k〉 p 〈H1 ,K1 〉 E ` 〈H1 ,K1 〉 q 〈H2 ,K2 〉
〈H ′,K ′〉 = 〈H2 ,K2 〉 when K1≤1 〈H ′,K ′〉 = 〈H1 ,K1 〉 when K1>1

E ` 〈h, k〉 seq p q 〈H ′,K ′〉 [FV -Seq]316

317

318

[FV -Present] computes the effects of p and q by extending the latest instant with S being319

present and absent, respectively. The final state is a union of the results (the notation ∪320

unions two program states).321

E ` 〈h · I +{S}, k〉 p 〈H1 ,K1 〉 E ` 〈h · I +{S}, k〉 q 〈H2 ,K2 〉
E ` 〈h · I , k〉 present S p q 〈H1 ,K1 〉 ∪ 〈H2 ,K2 〉

[FV -Present]322

323

324

[FV -Async] desugars the asynchronous primitive into a parallel program. [FV -Await]325

concatenates S? to the tail of the history trace. [FV -Exit] updates the value of k using d+2 .326

[FV -Trap] computes p’s effects. When K≤1 – there is no exit to be handled – the final state327

is 〈H ,K 〉. When K equals to 2, it means there is an exit that needs to be handled by the328

current trap. When K is greater than 2, it means that there is an exit needs to be handled329

by an outer trap statement, therefore it propagates the program state 〈H,K-1〉.330

E ` 〈h, k〉 (p; yield; emit S)||q 〈H ′,K ′〉
E ` 〈h, k〉 async S p q 〈H ′,K ′〉 [FV -Async]

k′=d+2
E ` 〈h, k〉 exit d 〈h, k ′〉 [FV -Exit]331

[FV -Await]
〈∆〉 = 〈h · S?, k〉

E ` 〈h, k〉 await S 〈∆〉

E ` 〈ε, k〉 p 〈H ,K 〉 〈∆〉=〈H,K〉 when (K≤1)
〈∆〉=〈H, 0〉 when (K=2)
〈∆〉=〈H,K-1〉 when (K>2)

E ` 〈h, k〉 trap p 〈h ·∆〉 [FV -Trap]332

333

334

I Definition 5 (Prepend Program States). Given a history trace h′, and program states335

∆=(H,K), we define that: h′ ·∆ = {(h′ · h, k) | (h, k) ∈ 〈H ,K 〉}.336

[FV -Call] triggers the back-end solver TRS to check if the instantiated precondition of the337

callee is satisfied by the current state. If it holds, the final state is obtained by concatenating338

the instantiated postcondition to the current effect state. Otherwise, the verification fails.339

[FV -Call]
mn(
−−−−→
τ S(x)) 〈req Φpre ens Φpost〉p ∈ P hvΦpre[−→S /

−−→
S(x)] 〈H,K〉=Φpost[

−→
S /
−−→
S(x)]

E ` 〈h, k〉 call mn (−→S ) 〈h ·H ,K 〉
340

E ` 〈ε, k〉 p 〈H ,K 〉
〈∆〉=〈h · (H )?,K 〉 when (K≤1 ) 〈∆〉=〈h ·H ,K 〉 when (K>1 )

E ` 〈h, k〉 loop p 〈∆〉 [FV -Loop]341

342

343

[FV -Loop] computes p’s effects with ε to be the history trace. If the completion code344

K≤1 , it appends a repeated trace to the history h · (H )?. Otherwise, it exits the loop.345
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E ` 〈ε, k〉 p 〈H,K〉
〈∆〉=ℵAbort(S,K)

Interleave (H, ε)
E ` 〈h, k〉 abort p S 〈h ·∆〉 [FV -Abort]

E ` 〈ε, k〉 p 〈H,K〉
〈∆〉=ℵSuspend(S,K)

Interleave (H)
E ` 〈h, k〉 suspend p S 〈h ·∆〉 [FV -Suspend]346

347

348

Algorithm 1 Weak Abort Interleaving

Input: S, (Φ, k),Φhis
Output: Program States ∆

1 rec function ℵAbort(S,K)
Interleave (Φ,Φhis)

2 if Φ=ε then
3 return [(ε, k)]
4 else
5 ∆← []
6 foreach f ∈ fst(Φ) do
7 φ← [(Φhis · (f+{S}), 0)]
8 Φ′ ← Df (Φ)
9 Φ′his ← Φhis · (f+{S})

10 ∆′←ℵAbort(S,K)
Interleave (Φ′,Φ′his)

11 ∆← ∆ ∪ φ ∪∆′

12 end
13 return ∆
14 end

[FV -Abort] and [FV -Suspend] compute349

the effects of p with ε to be the history350

traces; then calculate their corresponding351

interleaves7; lastly, prepend the original his-352

tory to the final results.353

aaa Algorithm 1 presents the interleaving al-354

gorithm for weak abortion (cf. Definition 8355

and Definition 10 for First(fst) and Deriv-356

ative(D) functions respectively).357

aaa In strong preemption, the latest instant358

does not run when the preemption condi-359

tion holds. In weak preemption, the latest360

instant is allowed to run even when the pree-361

mption condition holds but is terminated362

thereafter [22, 23]. Therefore, to implement363

the strong abortion from Algorithm 1, line364

7 should be revised to [(Φhis · {S}, 0 )]. We365

present the interleaving algorithm for sus-366

pension in Appendix C.367

aaa The rule [FV -Par] computes p and q’s effects independently, then parallel merges the368

results. Notation `pm refers to the parallelMerge algorithm, detailed in Sec. 4.1.369

E ` 〈ε, k〉 p 〈H1 ,K1 〉 E ` 〈ε, k〉 q 〈H2 ,K2 〉 `pm〈H1 ,K1 〉||〈H2 ,K2 〉 〈∆〉
E ` 〈h, k〉 p||q 〈h ·∆〉 [FV -Par ]370

371

372

4.1 Parallel Merge Algorithm373

The parallel merging8 rules are in the form: `p〈H1,K1〉 || 〈H2,K2〉  〈H ′,K ′〉. Given374

two sets of program states 〈H1 ,K1 〉 and 〈H2 ,K2 〉, the rule [PM-Union] obtains 〈∆〉 by375

combining the parallel merged states of their cartesian products.376

[PM -Union]
∀(h1, k1)∈〈H1,K1〉 ∀(h2, k2)∈〈H2,K2〉 〈∆〉=

⋃
(`pm 〈h1, k1〉||〈h2, k2〉 〈h′, k′〉)

`pm 〈H1 ,K1 〉||〈H2 ,K2 〉 〈∆〉
377

378

379

7 The interleaving comes from the over-approximation of all the possible effect traces. For example,
for trace {A} · {B}, the (weak) abort preemption with condition signal S creates three possibilities:
({A, S} · {B, S}) ∨ ({A, S} · {B, S}) ∨ ({A, S}).

8 To help with the understanding, concrete examples are:
- 〈{A} · {B} · {C}, 0 〉 || 〈{X} · {Y} · {Z}, 0 〉 〈{A, X} · {B, Y} · {C, Z}, 0 〉;
- 〈{A} · {C}, 2 〉 || 〈{X} · {Y} · {Z}, 0 〉 〈{A, X} · {C, Y}, 2 〉; and
- 〈{A} · {C}, 0 〉 || 〈{X} · {Y} · {Z}, 2 〉 〈{A, X} · {C, Y}, {Z}, 2 〉.
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[PM-Unfold] applies to deductive steps, which deploys auxiliary functions, fst(Φ) and380

DI (Φ), to compute the first instants and partial derivatives, cf. Definition 5.1. The first step381

is to get the first set from h1 and h2 , respectively. For each pair (f1 , f2 ) from the cartesian382

products of the first sets, it merges f1 and f2 to be the paralleled first instant, denoted as383

I ; then gets the derivatives of h1 and h2 w.r.t I respectively; Finally, it prepends I to the384

parallel merged derivatives by recursively calling the parallel merge algorithm.385

F1=fst(h1) F2=fst(h2) ∀f1∈F1.∀f2∈F2. I=f1∪f2,

der1=DI(h1) der2=DI(h2) 〈H ′,K ′〉=
⋃

(`pm〈der1, k1〉||〈der2, k2〉)
`pm 〈h1 , k1 〉||〈h2 , k2 〉 〈I ·H ′,K ′〉

[PM -Unfold]386

387

388

The next rules deal with the base cases and terminate the merging process. [PM-EqLen]389

is used when two effects have the same length. [PM-Cut] is used when one of the effects is390

shorter than the other and raises an exit. [PM-Absorb] is used when one of the effects are391

shorter than another yet without any exits.392

[PM -EqLen]
k′=max(k1, k2)

`pm 〈ε, k1 〉||〈ε, k2 〉 〈ε, k ′〉

[PM -Cut]
k1>1

`pm 〈ε, k1 〉||〈h2 , k2 〉 〈ε, k1 〉

[PM -Absorb]
k1≤1

`pm 〈ε, k1 〉||〈h2 , k2 〉 〈h2 , k2 〉
393

394

395

4.2 Soundness Theorem For the Forward Rules396

I Theorem 6 (Soundness of the Forward Rules). ∀p, E, if E ` 〈h, k〉 p 〈H ′,K ′〉, and ϕ |= h,397

and p e0 ,0−−→
E

∗
p′ ∅,1−−→

E
p1

e1 ,0−−→
E1

∗
p′1
∅,1−−→
E1

p2
e2 ,0−−→
E2

∗
p′2
∅,1−−→
E2

. . . pn
en ,0−−−→
En

∗
p′n

∅,kf−−→
En

(),398

then it implies that ∃(h′, k ′) ∈ 〈H ′,K ′〉 such that ϕ ++ [e0 ; e1 ; ...; en] |= h′ and k ′=kf .399

(Note that, p e,0−−→
∗

p′ denotes the reflexive, transitive closure of p e,0−−→ p′.)400

Proof. By induction on the structure of p. detailed in Appendix D. J401

5 Temporal Verification via a TRS402

The TRS is inspired by Antimirov and Mosses’ algorithm [15] but solving the language403

inclusions between ASyncEffs. It is triggered i) prior to module calls for the precondition404

checking; and ii) at the end of verifying a module for the post condition checking. More405

specifically, given two effects Φ1 ,Φ2 , TRS decides if the inclusion Φ1 v Φ2 is valid. During406

the effects rewriting process, the inclusions are in the form of Γ ` Φ1 vΦ Φ2 , a shorthand407

for: Γ ` Φ · Φ1 v Φ · Φ2 . To prove such inclusions is to check whether all the possible effect408

traces in the antecedent Φ1 are legitimately allowed in the possible effects traces from the409

consequent Φ2 . Γ is the proof context, i.e., effects inclusion hypotheses, Φ is the history410

effects from the antecedent that have been used to match the effects from the consequent.411

The inclusion checking is initially invoked with Γ={}, Φ=ε.412

5.1 Auxiliary Functions: Nullable, First and Derivative413

We provide definitions and implementations of auxiliary functions Nullable(δ), First(fst) and414

Derivative(D) respectively. Intuitively, the Nullable function δ(Φ) returns a boolean value415

indicating whether Φ contains the empty trace; the First function fst(Φ) computes a set of416

possible head instants of Φ; and the Derivative function DI (Φ) computes a next-state effects417
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after eliminating one instant I from the head of current effects Φ. Here marks the novel418

definitions – opposite to the existing ones in [15] – using ‘=♣’ in Definitions 6, 7, 9.419

I Definition 7 (Nullable). Given any effect Φ, δ(Φ)=true ⇔ (ε ∈ Φ), where:420

δ(⊥)=false δ(ε)=true δ(I )=false δ(S?)=♣false δ(Φ?)=true421

δ(Φ1 · Φ2 )=δ(Φ1 )∧δ(Φ2 ) δ(Φ1 ∨ Φ2 )=δ(Φ1 ) ∨ δ(Φ2 ) δ(Φ1 ||Φ2 )=♣δ(Φ1 )∧δ(Φ2 )422
423

I Definition 8 (First). Let fst(Φ):={I | (I · Φ′) ∈ JΦK} be the set of first instants derivable424

from effect Φ. (JΦK represents all the traces contained in Φ)425

fst(⊥)=fst(ε)={} fst(I )={I} fst(S?)=♣{{S7→present}; {S7→absent}}426

fst(Φ?)=fst(Φ) fst(Φ1 · Φ2 )=
{

fst(Φ1 ) ∪ fst(Φ2 ) if δ(Φ1 )=true
fst(Φ1 ) if δ(Φ1 )=false

427

fst(Φ1 ∨ Φ2 )=fst(Φ1 ) ∪ fst(Φ2 ) fst(Φ1 ||Φ2 )=♣{(f1 +f2 ) | f1 ∈ fst(Φ1 ), f2 ∈ fst(Φ2 )}428
429

I Definition 9 (Instants Subsumption). Given two instants I and J, we define the subset430

relation I⊆J as: the set of present signals in J is a subset of the set of present signals in I ,431

and the set of absent signals in J is a subset of the set of absent signals in I , as in having432

more constraints refers to a smaller set of satisfying instants. Formally,433

I ⊆ J ⇔ {S | (S7→present) ∈ J} ⊆ {S | (S7→present) ∈ I}434

and {S | (S7→absent) ∈ J} ⊆ {S | (S7→absent) ∈ I}435
436

I Definition 10 (Partial Derivatives for ASyncEffs). The partial derivative DI (Φ) of effects Φ437

w.r.t. an instant I computes the effects for the left quotient I -1 JΦK 9.438

DI (⊥)=⊥ DI (ε)=⊥ DI (J )=
{
ε if I⊆J
⊥ if I 6⊆J

DI (S?)=♣


ε if I⊆{S7→present}
⊥ if I 6⊆{S7→absent}
S? otherwise

439

DI (Φ?)=DI (Φ) · Φ? DI (Φ1 · Φ2 )=
{

DI (Φ1 ) · Φ2 ∨DI (Φ2 ) if δ(Φ1 )=true
DI (Φ1 ) · Φ2 if δ(Φ1 )=false

440

DI (Φ1 ∨ Φ2 )=DI (Φ1 ) ∨DI (Φ2 ) DI (Φ1 ||Φ2 )=♣DI (Φ1 )||DI (Φ2 )441
442

5.2 Rewriting Rules443

Given the well-defined auxiliary functions above, we now discuss the key steps and related444

rewriting rules that we may use in effects inclusion proofs.445

1. Axiom rules. Analogous to the standard propositional logic, ⊥ (referring to false)446

entails any effects, while no non-false effects entails ⊥.447

[Bot-LHS]

Γ ` ⊥ v Φ

[Bot-RHS]
Φ 6= ⊥

Γ ` Φ 6v ⊥

[Disprove]
δ(Φ1) ∧ ¬δ(Φ2)
Γ ` Φ1 6v Φ2

[Prove]
fst(Φ1 ) = {}
Γ ` Φ1 v Φ2

448

449

450

9 For example, {A}-1 J{A} · {B}K=J{B}K, and {A}-1 J{A} ∨ {B}K=Jε ∨ ⊥K, cf Definition 4.
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2. Disprove (Heuristic Refutation). We [Disprove] the inclusions when the ante-451

cedent is nullable, while the consequent is not. Intuitively, the antecedent contains at least452

one more trace, i.e., ε, than the consequent.453

3. Prove. We use two rules to prove an inclusion: (i) [Prove] is used when the fst set of454

the antecedent is empty; and (ii) [Reoccur] to prove an inclusion when there exist inclusion455

hypotheses in the proof context Γ , which are able to soundly prove the current goal. One of456

the special cases of this rule is when the identical inclusion is shown in the proof context, we457

then terminate the procedure and prove it as a valid inclusion.458

(Φ1 v Φ3) ∈ Γ (Φ3 v Φ4) ∈ Γ (Φ4 v Φ2) ∈ Γ
Γ ` Φ1 v Φ2

[Reoccur]459
460

461

4. Unfolding (Induction). This is the inductive step of unfolding the inclusions. Firstly,462

we make use of the auxiliary function fst to get a set of instants F , which are all the possible463

initial instants from the antecedent. Secondly, we obtain a new proof context Γ ′ by adding464

the current inclusion, as an inductive hypothesis, into the current proof context Γ . Thirdly,465

we iterate each element I ∈ F , and compute the partial derivatives (next-state effects) of466

both the antecedent and consequent w.r.t I . The proof of the original inclusion succeeds if467

all the derivative inclusions succeeds.468

F = fst(Φ1) Γ′=Γ, (Φ1 v Φ2) ∀I ∈ F.(Γ′ ` DI(Φ1) v DI(Φ2))
Γ ` Φ1 v Φ2

[Unfold]469
470

471

I Theorem 11 (TRS Termination). The rewriting system TRS is terminating.472

I Theorem 12 (TRS Soundness). Given an inclusion Φ1 v Φ2 , if the TRS returns TRUE473

when proving Φ1 v Φ2 , then Φ1 v Φ2 is valid.474

Proof. See Appendix E and Appendix F. J475

6 Implementation and Evaluation476

To show the feasibility of our approach, we prototype our automated verification system using477

OCaml; prove soundness for both the forward verifier and the TRS; validate and evaluate478

the implementation for conformance using a microbenchmark [24]. The microbenchmark479

is constructed by manually annotating ASyncEffs specifications, including both succeeded480

and failed cases. The validation tests are synthetic examples to test the main contributions,481

including the preemption interleaving computation and the inclusion checking for the parallel482

composition and the waiting operator.483

Table 3 presents the evaluation results. We select 16 target programs, varying from 15 lines484

to 300 lines, and annotate ASyncEffs specifications with a 1:1 ratio for succeeded/failed cases.485

The results record: No. for the index of the program; LOC for lines of code; Infer(ms) for486

effects inference time; #Prop(3)for the number of valid properties; Avg-Prove(ms)for the487

average proving time for the valid properties; #Prop(7)for the number of invalid properties;488

and Avg-Dis(ms)for the average disproving time for the invalid properties. Times are489

counted using milliseconds, and the experiment is done on a MacBook Pro with a 2.6 GHz490

6-Core Intel Core i7 processor.491

Discussion: Generally, the inference time increases with a linear complexity. We notice492

that the disproving times for invalid properties are constantly low. This finding echoes493
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Table 3 Experimental Results.

No. LOC Infer(ms) #Prop(3) Avg-Prove(ms) #Prop(7) Avg-Dis(ms)

1 18 0.037 5 0.7634 5 0.0116
2 33 0.145 5 1.3074 5 0.045
3 55 0.34 5 6.0766 5 1.1682
4 84 0.098 5 3.0678 5 0.1058
5 110 0.191 7 1.7544 7 0.5031
6 124 0.323 7 4.0114 7 0.3957
7 138 0.321 7 3.8399 7 0.4261
8 163 0.594 7 6.1009 7 1.5019
9 178 0.941 9 10.7758 9 0.5769
10 185 1.921 9 13.9332 9 0.04422
11 202 3.434 9 27.4447 9 0.0561
12 220 6.439 9 59.2226 9 0.745
13 250 3.6 11 29.5766 11 0.0662
14 261 7.552 11 64.2137 11 0.6121
15 293 14.896 11 115.9795 11 0.5462
16 304 30.889 11 237.2522 11 0.07164

the insights from prior TRS-based works [25, 15, 26, 27, 28], which suggest that TRS is a494

better average-case algorithm than those based on the comparison of automata. That is495

because it only constructs automata as far as it needs, which makes it more efficient when496

disproving incorrect specifications, as we can disprove it earlier without constructing the497

whole automata. In other words, the more incorrect specifications are, the more efficient our498

solver is. Our proposed effect logic and the abstract semantics for Esterel not only tightly499

capture the behaviors of an preemptive asynchronous execution models but also help to500

mitigate the programming challenges in both worlds.501

7 Related Work502

7.1 Verification framework503

This work is a significant extension of [14], which proposes a novel temporal verification504

framework - a forward verifier with a TRS - for pure synchronous languages; while [14] mainly505

tackles the causality checking problem for signal status concerning the perfect synchrony506

assumption. Although based on the same verification framework, this work is dedicated to507

the verification for the mixture of synchronous preemptions and asynchronous primitives,508

which have not been covered by [14] or any other prior works.509

7.2 Synchronous Preemptions and Asynchronous Promises.510

Our semantics model for Esterel, closely follows [23, 29, 22, 30], where [29, 22] define511

the operational semantics of synchronous language Esterel and [23, 30] provide general512

perspectives for preemptions. However, the existing state-based operational semantics are513

not ideal for compositional reasoning for preemptive programs at the source level, our514

work proposes novel axiomatic semantics, which can help meet this requirement for better515

modularity.516
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In particular, [30] also provides a solution for verifying synchronous preemptions, but517

using classic LTL formulas as the specifications and limited with only immediate preemptions.518

We are of the opinion that i) our ASyncEffs is more flexible in terms of the expressiveness519

power; ii) our TRS is more efficient by avoiding the complex translation into automata; iii)520

and our forward verifier provides more comprehensive reasoning for preemption primitives.521

ECMAScript 6 [31] supports primitives async and await serving for promises-based522

asynchronous programs, which can be written in a sequential style, leading to more concise523

code. However, the ECMAScript 6 standard specifies the semantics of promises informally524

and in operational terms, which is not suitable for formal reasoning or program analysis.525

Prior works [10, 11], in order to understand promise-related bugs, present the λp calculus,526

which provides a formal semantics for JavaScript promises. Based on these, our work defines527

the semantics of async and await in the event-driven synchronous concurrency context.528

To the best of our knowledge, this work is the first to combine the semantics of synchronous529

preemptions and asynchronous promises, building the theoretical foundation for analyzing530

such a blending of two distinct execution models.531

8 Conclusion532

We demonstrate how to give axiomatic semantics for the full-featured Esterel by trace533

processing functions, and use ASyncEffs to capture reactive program behaviors and temporal534

properties. Our proposal enables a Hoare-style forward verifier, which computes the program535

effects constructively. The proposed modular analysis of preemptions and asynchronous536

interactions are new and potentially useful for prior constructiveness analysis. We present537

an efficient TRS to prove the annotated ASyncEffs properties. We prototype the verification538

system and show its feasibility. In summary, our work is the first that formulates the539

semantics of an preemptive asynchronous execution model; that automates modular temporal540

verification for reactive programs using an expressive effect logic.541
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A Forward verification for the module Main640

module Main (out open, close, loading, loaded, compOther, logData){

(10) 〈{}〉 (– initialize the current effects using precondition’s last instant –)
emit open("filePath");

(11) 〈{open}〉 [FV-Emit]
fork{ Read (open, close, loading, loaded, compOther, logData); }

(12) {}? · {open} v ΦRead
pre [FV-Call](-TRS:Read’s precondition is satisfied when called-)

〈{open} · {loading, compOther} · {loaded} · {logData} · close?〉 [FV-Call]
(13) 〈{open}〉 (– inherited from state (11) –)

par { await logData;

(14) 〈{open} · logData?〉 [FV-Await]
emit close("filePath"); }}

(15) 〈{open} · logData? · {close}〉 [FV-Emit]
(16) 〈({open} · {loading, compOther} · {loaded} · {logData} · close?)

||({open} · logData? · {close})〉 [FV-Fork-Par]
〈{open} · {loading, compOther} · {loaded} · {logData} · {close}〉 [Effects-Parallel-Merge]

(17) (-TRS: check the postcondition of module Main; Succeed. -)
{open} · {loading, compOther} · {loaded} · {logData} · {close} v {open} · {}? · {close}

Figure 10 A demonstration of the forward verification for the module Main.

B Operational Semantics Rules for the Basic Statements641

We start with axioms: statement () terminates without emitting any signals and k=0 ;642

statement yield terminates without emitting any signals and k=1 ; and statement emit S643

sets the signal S to be present and terminates with k=0 .644

() ∅,0−−→
E

() [Axiom-Nothing] yield ∅,1−−→
E

() [Axiom-Yield] emit S {S},0−−−→
E

() [Axiom-Emit]645
646

The rules for sequences vary based on the completion code k: when p terminates with k=0 ,647

(Seq-0) executes q immediately; when p produces a yield, so does the whole sequence; when648

p raises an exception with depth k, (Seq-n) discards the rest of the code. The rule (Loop)649

performs an instantaneous unfolding of the loop into a sequence.650

[Seq-0]
p
α,0−−→
E

() q
f,k−−→
E

q′

p; q e∪f ,k−−−→
E

q′

[Seq-1]
p
α,k−−→
E

p′ (k≤1)

p; q α,k−−→
E

p′; q

[Seq-n]
p
α,k−−→
E

p′ (k>1)

p; q α,k−−→
E

()

[Loop]
p; loop p α,k−−→

E
p′

loop p α,k−−→
E

p′
651

652

The rule (Call) retrieves the function body p of mn from the program, and executes p.653

x (−→τ S) 〈req Φpre ens Φpost〉 p ∈ P p
α,k−−→
E

p′

call x (−→S ) α,k−−→
E

p′
[Call]654

655

656
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C Preemption Interleaving Algorithms657

We present the weak suspend interleaving in Algorithm 2. Furthermore, to implement the658

strong suspend from Algorithm 2, in line 9 should be: ∆2 ← {S} · {} ·∆′.659

Algorithm 2 Weak Suspend Interleaving

Input: S, (Φ, k)
Output: Program States, ∆

1 rec function ℵSuspend(S)
Interleave (Φ)

2 if Φ=ε then
3 return [(ε, k)]
4 else
5 ∆← []
6 foreach f ∈ fst(Φ) do
7 ∆′←ℵSuspend(S)

Interleave (Df (Φ))
8 ∆1 ← (f+{S}) ·∆′
9 ∆2 ← (f+{S}) · {} ·∆′

10 ∆← ∆ ∪∆1 ∪∆2

11 end
12 return ∆
13 end
14 . Notation + unions two instants
15 . Notation ∪ unions two program states

660

I Lemma 13 (Soundness of Weak Abort Interleaving). For function ℵAbort
Interleave, ∀S,Φ, k,Φhis,661

if Φ=ε, then ∆ = [(ε, k)], else ∆ =
⋃|F |

0 (Φhis, f+{S}, 0) :: ℵAbort
Interleave(Df (Φ),Φhis · (f+{S}))662

where F=fst(Φ).663

Proof. By induction on Φ, with Algorithm 1. J664

I Lemma 14 (Soundness of Weak Suspend Interleaving). For function ℵSuspend
Interleave, ∀S,Φ, k,665

if Φ=ε, then ∆ = [(ε, k)], else ∆ =
⋃|F |

0 ((f+{S}) ∨ (f+{S}) · {})) ·∆′, where F=fst(Φ) and666

∆′=ℵSuspend
Interleave(Df (Φ)).667

Proof. By induction on Φ, with Algorithm 2. J668

D Soundness of the Forward Rules669

∀p, E , if E ` 〈h, k〉 p 〈H ′,K ′〉, and ϕ |= h,670

and p e0 ,0−−→
E

∗
p′ ∅,1−−→

E
p1

e1 ,0−−→
E1

∗
p′1
∅,1−−→
E1

p2
e2 ,0−−→
E2

∗
p′2
∅,1−−→
E2

. . . pn
en ,0−−−→
En

∗
p′n

∅,kf−−→
En

(),671

then it implies that ∃(h′, k ′) ∈ 〈H ′,K ′〉 such that ϕ ++ [e0 ; e1 ; ...; en] |= h′ and k ′=kf .672

(Note that, p e,0−−→
∗

p′ denotes the reflexive, transitive closure of p e,0−−→ p′.)673

Proof. By induction on the structure of p:674

1. Emit: E ` 〈h, k〉 emit S 〈h, c+{S}, k〉, ϕ |= h and675

emit S {S},0−−−−→
E+{S}

(), implying ϕ ++ [{S}] |= h · (c+{S}), is proved.676

2. Yield: E ` 〈h, k〉 Yield 〈h · c, {}, k〉, ϕ |= h and677

Yield {},1−−→
∅

() {},0−−→
∅

(), implying ϕ ++ [{}] ++ [{}] |= h · c · {}, is proved.678
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3. Present: E ` 〈h, k〉 present S p q 〈H1,K1〉 ∪ 〈H2,K2〉, ϕ |= H , where679

E ` 〈h, c+{S}, k〉 p 〈H1 ,K1 〉 and E ` 〈h, c+{S}, k〉 q 〈H2 ,K2 〉.680

- When (S) ∈ c, present S p q  p, the inclusion is proved by inductive hypothesis.681

- When (S) 6∈ c, present S p q  q, the inclusion is proved by inductive hypothesis.682

4. Sequence: E ` 〈h, c, k〉 seq p q 〈H ′,K ′〉, ϕ |= H , where683

E ` 〈h, k〉 p 〈H1 ,K1 〉, E ` 〈H1 ,K1 〉 q 〈H2 ,K2 〉 and684

〈H ′,K ′〉=〈H2 ,K2 〉(K1≤1 ) or 〈H ′,K ′〉=〈H1 ,K1 〉(K1>1 )685

- When K1 =0 , seq p q e0 ,0−−→
E

∗
...

en ,0−−−→
En

∗
q en∪f0 ,0−−−−−→

E′

∗
...

fm ,0−−−→
E′

n

∗
qn
∅,k−−→
E′

n
();686

therefore ϕ ++ [e0 ; ...; (en∪f0 ); ...; fm |= H2 · C2 .687

- When K1 =1 , seq p q e0 ,0−−→
E

∗
...

en ,0−−−→
En

∗
pn
∅,1−−→
E

q f0 ,0−−→
E′

∗
...

fm ,0−−−→
E′

n

∗
qn
∅,k−−→
E′

n
();688

therefore ϕ ++ [e0 ; ...; en; f0 ; ...; fn |= H2 · C2 .689

- When K1>1 , seq p q e0 ,0−−→
E

∗
...

en ,0−−−→
En

∗
pn

∅,k−−→
En

(), therefore ϕ ++ [e0 ; ...; en |= H1 · C1 .690

5. Exit: E ` 〈h, k〉 exit d 〈h, c, d+ 2〉, ϕ|=H and exit d {},d+2−−−−→
E

(),691

implying ϕ ++ [{}] |= h · c, is proved .692

6. Trap: E ` 〈h, k〉 trap p 〈h ·∆〉 and ϕ |= H , and E ` 〈ε, k〉p〈H ,C ,K 〉, where693

〈∆〉=〈H ,C ,K 〉when(K≤1 ); 〈∆〉=〈H ,C , 0 〉when(K=2 ); 〈∆〉=〈H ,C ,K-1 〉when(K>2 )694

- When K≤1 : trap p  p, the entailment is proved by inductive hypothesis.695

- When K=2 : by [Trap-2], trap p {},0−−→
E

(), implying ϕ ++ [{}] |= H · C , is proved.696

- When K>2 : by [Trap-3], trap p {},K-1−−−−→
E

(), implying ϕ ++ [{}] |= H · C , is proved.697

698

7. Await: E ` 〈h, k〉 await S 〈h · (c||S?), {}, k〉 and ϕ |= H ,699

- When S ∈ E : by [Await-1] await S {},1−−→
E

() {},0−−→
E1

(), ϕ++[{}]++[{}] |= h · c · {}, is proved.700

- When (S) 6∈ E : by by [Await-2] let ϕ′ |= S?, ϕ ++ [{}] ++ ϕ′ |= h · c · S?, is proved .701

8. Async: E ` 〈h, k〉 async S p q 〈H ′,K ′〉 and ϕ |= H where702

E ` 〈h, k〉 (p; emit S)||q 〈H ′,K ′〉 and async S p q  (p; emit S||q), therefore the entail-703

ment is proved by inductive hypothesis.704

9. Parallel: E ` 〈h, k〉 p||q 〈h ·∆〉 and ϕ |= H where E ` 〈ε, c, k〉 p 〈H1 ,K1 〉705

E ` 〈ε, c, k〉 q 〈H2 ,K2 〉 and `pm 〈H1 ,K1 〉||〈H2 ,K2 〉 〈∆〉.706

-When p and q exit at the same instant: the entailment is proved by [PM-Unfold] and707

[PM-EqLen].708

-When p exits with an exception, and earlier than q: the entailment is proved by [PM-Unfold]709

and [PM-Cut].710

-When p exits earlier than q without any exceptions: the entailment is proved by [PM-Unfold]711

and [PM-Absorb].712

10. Abort: E ` 〈h, k〉 abort p S 〈h ·∆〉 and ϕ |= H , where E ` 〈ε, c, k〉p〈H ,C ,K 〉 and713

〈∆〉=ℵAbort(S,C ,K)
Interleave (H , ε).714

By semantics rules [Abort-1] and [Abort-2]; and Lemma 13.715

11. Suspend: E ` 〈h, k〉 suspend p S 〈h ·∆〉 and ϕ |= H , where716

E ` 〈ε, c, k〉 p 〈H ,C ,K 〉 and 〈∆〉=ℵSuspend(S,C ,K)
Interleave (H ). By semantics rules [Suspend-1] and717

[Suspend-2]; and Lemma 14.718

J719
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E Termination Proof720

Proof. Let Set[I] be a data structure representing the sets of inclusions.721

We use S to denote the inclusions to be proved, and H to accumulate "inductive hypo-722

theses", i.e., S ,H ∈ Set[I].723

Consider the following partial ordering � on pairs 〈S ,H 〉:724

〈S1 ,H1 〉 � 〈S2 ,H2 〉 iff |H1 | < |H2 | ∨ (|H1 | = |H2 | ∧ |S1 | > |S2 |).725
726

where |X | stands for the cardinality of a set X . Let ⇒ donate the rewrite relation, then ⇒∗727

denotes its reflexive transitive closure. For any given S0 , H0 , this ordering is well founded728

on the set of pairs {〈S ,H 〉|〈S0 ,H0 〉 ⇒∗ 〈S ,H 〉}, due to the fact that H is a subset of the729

finite set of pairs of all possible derivatives in initial inclusion.730

Inference rules in our TRS given in Sec. 5.2 transform current pairs 〈S ,H 〉 to new pairs731

〈S ′,H ′〉. And each rule either increases |H | (Unfolding) or, otherwise, reduces |S | (Axiom,732

Disprove, Prove), therefore the system is terminating.733

J734

F Soundness Proof735

Proof. For each inference rules, if inclusions in their premises are valid, and their side736

conditions are satisfied, then goal inclusions in their conclusions are valid.737

1. Axiom Rules:738

[Bot-LHS]

Γ ` ⊥ v Φ

[Bot-RHS]
Φ 6= ⊥

Γ ` Φ 6v ⊥

[Disprove]
δ(Φ1) ∧ ¬δ(Φ2)
Γ ` Φ1 6v Φ2

[Prove]
fst(Φ1 ) = {}
Γ ` Φ1 v Φ2

739

740

- It is easy to verify that antecedent of goal entailments in the rule [Bot-LHS] is unsatisfiable.741

Therefore, these entailments are evidently valid.742

- It is easy to verify that consequent of goal entailments in the rule [Bot-RHS] is unsatisfiable.743

Therefore, these entailments are evidently invalid.744

2. Disprove Rules:745

- It’s straightforward to prove soundness of the rule [Disprove], Given that Φ1 is nullable,746

while Φ2 is not nullable, thus clearly the antecedent contains more traces than the consequent.747

Therefore, these entailments are evidently invalid.748

3. Prove Rules:749

(Φ1 v Φ3) ∈ Γ (Φ3 v Φ4) ∈ Γ (Φ4 v Φ2) ∈ Γ
Γ ` Φ1 v Φ2

[Reoccur]750
751

- For the rule [Prove], we consider an arbitrary model, ϕ such that: ϕ |= Φ1. Given the752

side conditions from the promises, we get ϕ |= Φ1. When the fst set of Φ1 is empty, Φ1 is753

possible ⊥ or ε; and Φ2 is nullable. For both cases, the inclusion is proved .754

- For the rule [Reoccur], we consider an arbitrary model, ϕ such that: ϕ |= Φ1. Given755

the promises that Φ1 v Φ3, we get ϕ |= Φ3; Given the promise that there exists a hypothesis756

Φ3 v Φ4, we get ϕ |= Φ4; Given the promises that Φ4 v Φ2, we get ϕ |= Φ2. Therefore, the757

inclusion is proved .758
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4. Inductive Unfolding Rule:759

F = fst(Φ1) Γ′=Γ, (Φ1 v Φ2) ∀I ∈ F.(Γ′ ` DI(Φ1) v DI(Φ2))
Γ ` Φ1 v Φ2

[Unfold]760
761

- For the rule [Unfold], we consider an arbitrary model, ϕ1 and ϕ2 such that: ϕ1 |= Φ1 and762

ϕ2 |= Φ2. For an arbitrary instant I, let ϕ1
′ |= I-1JΦ1K; and ϕ2

′ |= I-1JΦ2K.763

Case 1), I/∈F , ϕ1
′ |= ⊥, thus automatically ϕ1

′ |= DI(Φ2);764

Case 2), I ∈ F , given that inclusions in the rule’s premise is proved , then ϕ1
′ |= DI(Φ2).765

By Definition 4, since for all I, DI(Φ1) v DI(Φ2), the conclusion is proved .766

All the inference rules used in the TRS are sound, therefore the TRS is sound. J767
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