National Universit

of Singapor

An SQL Frontend on top of OCaml
for Data Analysis

Yan Dong, Yahui Song, Chin Wei Ngan

National University of Singapore

2"d Sep 2022 @ IFL’22 in Copenhagen

From loops to functional stream processing

List<Album> albums
List<String> result new ArraylList

for (Album album albums

if (album.getYear
continue

if (album.getGenre Genre.ALTERNATIVE
continue

result.add(album.getName

if (result.size
break

List<String> result
albums.stream
Collections.sort(result filter(album album.getYear 1999
filter(album album.getGenre Genre.ALTERNATIVE
limit (5
This code is equivalent to: map (Albun: : getName

sorted
collect(Collectors.toList

Motivation Example - Data Processing

* Incomes sorted by month in decreasing order in 2021

1 type order = { id: int; price: float; month: string }

2

3 1let group £ 1 =

4 let eq a b = compare (f a) (f b) = 0 in

5 List.to_seq 1 |> Seq.group eq |> Seq.map List.of_seq |> List.of_seq

6

7 let income_by_month : order list -> (string * float) list =

§ fun orders -> OCaml code written

9 orders « T
10 |> List.filter (fun o -> o.month >= "2021-01" && o.month <= "2021-12") in a functional manner
11 |> List.sort (fun a b -> compare a.month b.month)
12 |> group (fun o -> o.month)
13 |> List.map (fun 1 ->
14 List.fold_left)
15 (fun (m, income) o -> (m, o.price +. income)) With SQL Select Query,
16 ((List.hd 1) .month, 0.0) 1) : :
17 |> List.sort (fun (_, s1) (_, s2) -> compare s2 sl) Fhe logic can b_e rewritten

INn @ more concise way
. . . . v

1 let income_by_month : order list -> (string * float) list =

2 fun orders ->

3 SELECT o.month, {sum o.price} FROM o <- orders

4 WHERE o.month >= "2021-01" && o.month <= "2021-12"

5 GROUP BY o.month ORDER BY {sum o.price} DESC

Motivation Example - Data Processing

* Incomes sorted by month in decreasing order in 2021

Implement databases by

; type order = { id: int; price: float; month: string } modlfymg general-purposed
3 let group £ 1 = .

4 let eq a b = compare (f a) (f b) = 0 in programming languages
5 List.to_seq 1 |> Seq.group eq |> Seq.map List.of_seq |> List.of_seq

6

7 let income_by_month : order list -> (string * float) list =

§ fun orders -> OCaml code written

9 orders «— T
10 |> List.filter (fun o -> o.month >= "2021-01" && o.month <= "2021-12") in a functional manner
11 |> List.sort (fun a b -> compare a.month b.month)
12 |> group (fun o -> o.month)
13 |> List.map (fun 1 ->
14 List.fold_left)
15 (fun (m, income) o -> (m, o.price +. income)) With SQL Select Query,
16 ((List.hd 1) .month, 0.0) 1) ; ;
17 |> List.sort (fun (_, s1) (_, s2) -> compare s2 sl) Fhe logic can b_e rewritten

INn @ more concise way
. . . . v

1 let income_by_month : order list -> (string * float) list =

2 fun orders ->

3 SELECT o.month, {sum o.price} FROM o <- orders

4 WHERE o.month >= "2021-01" && o.month <= "2021-12"

5 GROUP BY o.month ORDER BY {sum o.price} DESC

We propose: SelectML = OCaml + Select Query

e SelectML is built on top of OCaml

 Static typed & Functional

e SelectML introduces SQL Select Query onto OCaml

e Supporting a declarative way for data processing

 Suitable for operating list data

» Also supporting arrays, sequences, and user-defined data types

* Orthogonal with other OCaml language features

e Core language, module language, object language, ...

System Overview

* OCaml frontend | Source Program Lorsing, Parsetree —279, — Typedtree Transtating, 1 ambda,

* SelectML is implemented by modifying the parsing and typing phases

System Overview

* OCaml frontend | Source Programe Parsetree —22*"% Typedtree}ﬂamlatmg, Lambda

\ _____ o — e — e —— S
. SeIECtW by modifying the parsing and typing phases\

Typing
OCaml Expression —— Typedtree
Parsetree < Type Check Translating

Select Expression > Query Plan > Typedtree
& Planning

\

v'Adding the syntax support for SelectML
v'Conduct type checking before code refracturing
v'Code refracturing via a formally defined translation schema with a set of query plans

SelectML Language Design

 OCaml + Select Expression

* SELECT, DISTINCT, FROM, WHERE, GROUP BY, HAVING, ORDER BY

* Aggregate functions & applications Variables z
Expressions

Select Expressions ¢

- gl {ee;

SELECT [DISTINCT| e [FROM s| [WHERE]
[GROUP BY e] [HAVING €] [ORDER BY o]
xe|(ry,...,x,) < €] s,s

e [ASC | DESC | USING €] | 0,0

®
|

« Common features for data analysis

Source Expressions s

* mapping, filtering, grouping, ordering Order Expressions

(* as arguments *)
f 123 (SELECT x FROM x <- xs)

(* as return values *)
let g xs = SELECT x FROM x <- xs

OO Ut i W+

(* as operands *)
x :: SELECT y FROM y <- ys

* FROM clause 1 /% SQL %/
2 SELECT x, y FROM xs AS x, ys AS y;

e Xs AS x changedto ‘x«xs’
. 1 (* SelectML *)
e x::'a, xs:'a list 2 SELECT X, y FROM X <- XS, y <- yS::

1 /% SQL %/
* GROUP BY clause 2 SELECT x, COUNT(y) FROM t GROUP BY x;

* COUNT (y) changedto {count y} [, selectm #
2 SELECT x, {count y} FROM (x, y) <- t GROUP BY x;;

FROM clause

e Xs AS x changedto ‘x«xs’
e x::'a, xs:'a list

1 /* SQL %/
2 SELECT x, y FROM xs AS x, ys AS y;

1 (* SelectML *)
2 SELECT x, y FROM x <- xs, y <- ys;;

GROUP BY clause
e COUNT(y) changedto {count y}

1 /% SQL %/
2 SELECT x, COUNT(y) FROM t GROUP BY x;

1 (*x SelectML %)
2 SELECT x, {count y} FROM (x, y) <- t GROUP BY x;;

WHERE & HAVING clause

* Boolean expressions .
e WHERE: before GROUP BY 2

SELECT x FROM x <- xs WHERE f x;;
SELECT {h x} FROM x <- xs HAVING g {h x};;

* HAVING: after GROUP BY

Aggregate functions

* Line 2:
('a, 'b) agg isthe built-in type
for aggregate functions

* Line 4~9:
Common aggregate functions: AVG,
COUNT, sUM, MIN, MAX

type ('a, 'b, 'c) aggfun
type (_,

c="'cx*x ('c >"'a->"'c) * ('c -> 'b)
_) agg = Agg : ('a, 'b, 'c) aggfunc -> ('a, 'b) agg

1 val mkagg : 'c > ('c -=> 'a -> '¢c) > ('c -> 'b) -> ('a,
2

3 (* create an aggregate function %)

4 let count = mkagg @ (fun n _ ->n + 1) (fun n -> n);;

5

6 (* usage inside Select Expression x*)

7 SELECT {count x} FROM x <- [1;2;3];;

© 00O Otk W

'b) agg

* ORDER BY clause

Ordering key must be comparable expressions
Ordering directions: ASC, DESC , USING cmp_func

let odd_first a b =
let x =amod 2 = 0 in
let y =bmod 2 =0 in

compare X Y;;

SELECT x, y
FROM (x, y) <- [("a", 2); ("a", 3); ("b", 4); ("b", 5)]
ORDER BY x ASC, y USING odd_first;;

O 0 N N TR W N =

—
o

-:(string * int) SelectML.src=[("a",3); ("a",2);("b",5);("b",4)]

 ORDER BY clause
* Ordering key must be comparable expressions

* Ordering directions: ASC, DESC, USING cmp func

1 let odd_first a b =

2 let x = amod 2 = 0 in

3 let y =bmod 2 =0 in

4 compare X Y;;

5

6 SELECT x, y

7 FROM (x, y) <= [("a", 2); ("a", 3); ("b", 4); ("b", 5)]
8 ORDER BY x ASC, y USING odd_first;;

9

—
o

-:(string * int) SelectML.src=[("a",3); ("a",2);("b",5);("b",4)]

e SELECT clause
e DISTINCT for deduplication

* Type of Select Expressions
* Assume the type of SELECT clauseis 'a
* Line 1~8: general cases
* type 'a list
* Line 10™16: returns exactly one row
* type 'a

O 00 N N e W =

_= R = R B e
N R W N = O

SELECT x FROM x <- [1;1;2;2;3;3];;
- . int list = [1; 1; 2; 2; 3; 3]

SELECT DISTINCT x FROM x <- [1;1;2;2;3;3];;
- ¢ int list = [1; 2; 3]

SELECT y, x FROM (x, y) <- [("a", 1); ("b", 2)1;;
- : (int * string) list = [(1, "a"); (2, "b")]

(* without FROM, WHERE, and HAVING x*)
SELECT x, y;;

SELECT x, y GROUP BY z;;

SELECT x, y ORDER BY z;;

(* aggregation without GROUP BY, WHERE, and HAVING x)
SELECT {count x} FROM x <- t;;

Query Plans

* Source code - Query plans (8 kinds)

S Empty Source
D, (e) Data Source
P1 X P2 Cartesian Product
U(P) Deduplication

oe(P)
He/)((SD)
egea/)((P)
eSe (P)

Selection
Projection
Aggregation
Sorting

H(cl, C3)

1

3 ODESC
A
clg(firstrow, sum) /(c1, c3)
A

1_[(o .month, o.price)/(ci, c3)
A

0v2021-01"<o .nionthg "2021-12"

type order = { id: int; price: float; month: string }

SELECT o.month, {sum o.price} FROM o <- orders

WHERE o.month >= "2021-01" && o.month <= "2021-12"

GROUP BY o.month ORDER BY {sum o.price} DESC

D,

A

orders

Translation Schema

* Translation Schema: Query plans - Typed OCaml code

* Semantics of the query plans are captured by primitives listed in module SelectML

C3 SDESC

t

c1 g(firstrow , sum) /(c1, c3)

1_I(o.month, o.price)/(cy, ¢3)

t

0v2021-01"<o0.month<"2021-12"

t

D,

I

orders

—

1 orders

2 |> SelectML.input

3 |> SelectML.filter (fun o ->

4 o.month >= "2021-01" && o.month <= "2021-12")
5 |> SelectML.map (fun o -> o.month, o.price)

6 |> SelectML.group (fun (__col_1, __col_2) -> __col_1)

7 (let Agg (init1, updatel, finall) = Stdlib.firstrow in

8 let Agg (init2, update2, final2) = Stdlib.sum in

9 Agg ((init1, init2),

(fun (accl, acc2) (x1, x2) ->
updatel accl x1, update2 acc2 x2),
(fun (accl, acc2) -> finall accl, final2 acc2)))
|> let key (__col_1, __col_3) -> __col_3) in
SelectML.sort (fun a b -> compare (key b) (key a))
|> SelectML.output

[WYy
gl RN = O

Translation Schema in Detail

* Query plans are translated to primitives defined in Stdlib module SelectML
* Primitives defined on line 1~10 are used by intermediate computations

* Primitives defined on line 12~14 are used for casting type

type 'a t = 'a list

val one : 'at > 'a

val singleton : 'a -> 'a t

val product : ('a -> 'b -> 'c) -=> 'at->'bt->'ct
val map : ('a->"'b) -> 'at->"bt

val filter : ('a -> bool) -> 'at -> 'a t

val sort : ('a-> 'a->int) -> 'at > 'at

val unique : 'at -> 'at

val group_all : ('a, 'b) agg > 'a 't -=> 'b

val group : ('a -> 'c) -> ('a, 'b) agg > 'at -> 'b t

O 0 NN N U W N =

—
(=}

11

12 type 'a src = 'a list

13 val input : 'a src -> 'a t
14 val output : 'at -> 'a src

Translation Schema in Deta

* Query plans are translated to primitives defined in St

* Primitives defined on line 1~10 are used by intermedi

* Primitives defined on line 12~14 are used for casting -

O 0 NN N U W N =

—
(=}

11
12
13
14

type 'a t = 'a list
val one : 'at -> 'a
val singleton : 'a -> 'a t

val product : ('a -> 'b -> 'c) -> 'at -> 'bt ->
val map : ('a->"'b) -> 'at->"bt

val filter :

'a -> bool) -> 'at > 'at

(
val sort : ('a -> 'a->int) > 'at -> 'at
]

val unique : 'at -> 'at

val group_all : ('a, 'b) agg -=> 'at -> 'b

val group : ('a -> 'c) -> ('a,

type 'a src = 'a list
val input : 'a src -> 'a t
val output : 'a t -> 'a src

'b) agg > 'a t ->

O 0 NN N R W N =

e e
N o= O

BN N DN DN DN e e e e e e e
B W N = O 0 NN N e W

25

[E] => SelectML.singleton ()
[Dy(e)] => e |> SelectML.input

[P1 x P.]| => SelectML.product
(fun [¢(PD] [¢(P2)] > [¢(PO] + [¢(P)]D) [P1] [P-]

[oe(P)] => [P] |> SelectML.filter (fun [¢(P)] -> e
[Me/y (P)] => [P] 1> SelectML.map (fun [¢(P)] -> e)

[eSef(P)]] => [P] > (et cmp = ef and key [¢(P)] = e in
SelectML.sort (fun a b -> cmp (key a) (key b)))

[UP)] => [P] |> SelectML.unique

[eGe,....en (P)] => [P] |> SelectML.group
(fun [¢(P)] -> e) [combine(ey,..., en)]

[Gey..oen (P)] => [P] |> SelectML.group_all [combine(es,..., en)]
|> SelectML.singleton

[combine(ey, . . ., en)] =>
let Agg (init1, updatel, finall) = e; in
let Agg (initn, updaten, finaln) = e, in
Agg ((initl1, ... , initn),
(fun (accl, ... , accn) (x1, ... , xn) ->
(updatel accl x1, ... , updaten accn xn)),
(fun (accl, ... , accn) -> (finall accl, ... , finaln accn)))

[# with exactly one row] => [P] |> SelectML.one

[# at the outermost] => [P] |> SelectML.output

Implementation

* Core implementation: ~ 1000 LOC in OCaml
* Test for validation: ~ 60 testcases, manually marked with the expected outputs

* Flexible Customisations
v’ Customise the semantics of Select Expression: rewrite the WHERE implementation to keep the falsas
v’ Change the input and output type of Select Expression: from 'a listto 'a array
v’ Change the intermediate type of Select Expression: from list to array.

v’ Generalization with Functors: to deal with both list type and array type.

https://github.com/dyzsr/ocaml-selectml

https://github.com/dyzsr/ocaml-selectml

Implementation

1 (* invalid in OCaml %) This does not type check!!!
2 let f (module SelectML : SelectMLType) xs ys =
3 SELECT x, y FROM x <- xs, y <- ys WHERE x < y;;

Figure 36: Generalising the Type and Operations

* Core implementation: ~ 1000 LOC in OCaml

* Test for validation: ~ 60 testcases,

manually marked with the expected outputs

* Flexible Customisations

v’ Customise the semantics of Select

v’ Change the input and output type

O 00N N R W N

v’ Change the intermediate type of S

—_
o

v’ Generalization with Functors: to de|;;

12
. 13
https://github.com/dyzsr/oi.,
15
16

module F (SelectML : SelectMLType) = struct
let run xs ys = SELECT x, y FROM x <- xs, y <- ys WHERE x < y;;
end; ;
module F : (* REPL output %)
functor (SelectML : SelectMLType) ->
sig
val run : 'a SelectML.src -> 'a SelectML.src ->
('a * 'a) SelectML.src
end

(* Supplying primitives with the list implementation %)
let open F (ListImpl) in run ...

(* Supplying primitives with the array implementation x*)
let open F (ArrayImpl) in run ...

https://github.com/dyzsr/ocaml-selectml

Possible More Features

1. Joins & Cartesian product + filter: may reduce memory consumption

1 val join : ('a -> 'b -> 'c option) -> 'at -> 'bt -> 'c t
val join_eq : ('a -> 'd) > ('b -> 'd) -> 'at > 'bt -> 'c t

(* when hash key can be determined *)
SELECT ... FROM x <- xs JOIN y <- ys ON x = y;;
(* translation *)
SelectML.join_eq (fun x -> x) (fun y -> y) xs ys;;

(* when hash key cannot be determined *)
SELECT ... FROM x <- xs JOIN y <- ys ON f x y;;
(* translation *)
SelectML.join (fun x y -> if f x y then Some (x, y) else None) xs ys;;

© 00O Utk W+

2. Window Functions
* They are like aggregate functions, but without causing rows to become grouped into a single output

e Additional window functions: LEAD, LAG, RANK, ...| 1 TINSERT INTO t VALUES (1,1),(1,2),(1,3),(2,2),(2,3),(3,3);

2 SELECT x, COUNT(y) OVER (PARTITION BY x) FROM t;

x=1, count=3 %=1 count=3 3 SELECT x, COUNT(y) OVER (ORDER BY x) FROM t;

=1, £=3 _, _ 4

X_1 count_s x=1, count=3 5 /% PARTITION BY x*/ /* ORDER BY */

x~-, countm x=1, count=3 6 x | count x | count

x=2, count=2 x=2, count=5 7 e —— I —

X=2, count=2 X=2, count=5 8 1 I 3 1 | 3

x=3, count=1 x=3, count=6 9 1] 3 1] 3
10 1 | 3 1 | 3

(a) Window Frames of PARTITION BY (b) Window Frames of ORDER BY 11 2 | 2 2 | 5

12 2 | 2 2 | 5
13 3| 1 3 | 6

Possible Optimizations

1. Rule-based optimisation
* Eliminate unnecessary plans I, c,)(I(z,)/(c1,c2) (P)) = Il (z4)(P)

e Push down filters Ux<1/\y>1(Dx(XS) X Dy(yS)) = 05<1(Dy(x8)) X 0y>1(Dy(yS))

2. Cost-based optimisation

e Select the optimal algorithm for a query plan, based on the runtime information of data

3. Indexes
/* SQL */

SELECT x FROM xs AS x WHERE x BETWEEN 1b AND ub
SELECT x FROM xs AS x, ys AS y WHERE x < 1
SELECT x FROM xs AS x, ys AS y WHERE x < y

W N =

e Optimising table scan

* May require modifications 16 1let f (module XS : (int * int) list ORDER BY 0) =

17 SELECT x, y FROM (x, y) <- (module XS) WHERE 1b <= x && x <= ub;;
18

on the OCaml| type system 19 type order = { id: int; price: float; month: string }

20

21 let f' (module XS : order list ORDER BY price) =

22 SELECT x FROM x <- (module XS) WHERE 1b <=. x && x <=. ub;;

Create Database

* From REPL (Read—eval—print loop) to Database

* Behaviors

 #HCREATE introduces a top-level variable xs of type (int * int) table

* HINSERT insertstwo newrows (1,2), (3,4) toxs

 H#UPDATE updates xs by setting increasing the first column by 1

U W N

#CREATE TABLE xs : int * int;;
#INSERT INTO xs VALUES (1,2), (3,4);;
#UPDATE (a, b) <- xs SET (a+1, b);;

SELECT a, b FROM (a, b) <- xs WHERE a < 4;;

1
2

SelectML.insert [(1,2); (3,4)] xs;;
SelectML.update (fun (a, b) -> (a+l, b)) xs;;

U W N

module SelectMLType = sig

val insert : 'a list -> 'a src —-> unit
val update : ('a -> 'a) -> 'a src -> unit
end

Conclusions

* SelectML = OCaml + Select Query

Language Design: Select Expression & Aggregate functions

Semantics: Typing & Planning rules & Translation schema

Implementation: Different Flexible Customisations

More possible features and future work
* Joins, window functions, optimisations, indexes

* Connection to database via libraries such as 'caqti' with 'postgresql' database

Conclusions

* SelectML = OCaml + Select Query

Language Design: Select Expression & Aggregate functions

Semantics: Typing & Planning rules & Translation schema

Implementation: Different Flexible Customisations ThankS!

More possible features and future work
* Joins, window functions, optimisations, indexes

* Connection to database via libraries such as 'caqti' with 'postgresql' database

