
An SQL Frontend on top of OCaml 
for Data Analysis

Yan Dong, Yahui Song, Chin Wei Ngan

National University of Singapore

2nd Sep 2022 @ IFL’22 in Copenhagen



From loops to functional stream processing 

This code is equivalent to:



Motivation Example - Data Processing
• Incomes sorted by month in decreasing order in 2021

OCaml code written 
in a functional manner

With SQL Select Query, 
the logic can be rewritten 
in a more concise way



Motivation Example - Data Processing
• Incomes sorted by month in decreasing order in 2021

OCaml code written 
in a functional manner

With SQL Select Query, 
the logic can be rewritten 
in a more concise way

Implement databases by 

modifying general-purposed 

programming languages



We propose: SelectML = OCaml + Select Query

• SelectML is built on top of OCaml

• Static typed & Functional

• SelectML introduces SQL Select Query onto OCaml

• Supporting a declarative way for data processing

• Suitable for operating list data

• Also supporting arrays, sequences, and user-defined data types

• Orthogonal with other OCaml language features

• Core language, module language, object language, …



System Overview

• OCaml frontend

• SelectML is implemented by modifying the parsing and typing phases



System Overview

• OCaml frontend

• SelectML is implemented by modifying the parsing and typing phases

üAdding the syntax support for SelectML
üConduct type checking before code refracturing
üCode refracturing via a formally defined translation schema with a set of query plans



SelectML Language Design
• OCaml + Select Expression

• SELECT, DISTINCT, FROM, WHERE, GROUP BY, HAVING, ORDER BY

• Aggregate functions & applications

• Common features for data analysis

• mapping, filtering, grouping, ordering



• FROM clause
• xs AS x changed to ‘x←xs’
• x ::’a, xs ::'a list

• GROUP BY clause
• COUNT(y) changed to {count y}



• FROM clause
• xs AS x changed to ‘x←xs’
• x ::’a, xs ::'a list

• GROUP BY clause
• COUNT(y) changed to {count y}

• WHERE & HAVING clause
• Boolean expressions
• WHERE: before GROUP BY
• HAVING: after GROUP BY

• Aggregate functions
• Line 2:
('a, 'b) agg is the built-in type 
for aggregate functions

• Line 4~9:
Common aggregate functions: AVG, 
COUNT, SUM, MIN, MAX



• ORDER BY clause
• Ordering key must be comparable expressions
• Ordering directions: ASC, DESC , USING cmp_func



• ORDER BY clause
• Ordering key must be comparable expressions
• Ordering directions: ASC, DESC , USING cmp_func

• SELECT clause
• DISTINCT for deduplication

• Type of Select Expressions
• Assume the type of SELECT clause is 'a
• Line 1~8: general cases

• type 'a list
• Line 10~16: returns exactly one row

• type 'a



Query Plans and Translation Schema

• Source code → Query plans (8 kinds)



Query Plans and Translation Schema

• Translation Schema: Query plans → Typed OCaml code

• Semantics of the query plans are captured by primitives listed in module SelectML



Translation Schema in Detail 
• Query plans are translated to primitives defined in Stdlib module SelectML

• Primitives defined on line 1~10 are used by intermediate computations

• Primitives defined on line 12~14 are used for casting type



Translation Schema in Detail 
• Query plans are translated to primitives defined in Stdlib module SelectML

• Primitives defined on line 1~10 are used by intermediate computations

• Primitives defined on line 12~14 are used for casting type



Implementation
• Core implementation: ~ 1000 LOC in OCaml

• Test for validation: ~ 60 testcases, manually marked with the expected outputs 

• Flexible Customisations

üCustomise the semantics of Select Expression: rewrite the WHERE implementation to keep the falsas

üChange the input and output type of Select Expression: from 'a list to 'a array

üChange the intermediate type of Select Expression: from list to array. 

üGeneralization with Functors: to deal with both list type and array type. 

https://github.com/dyzsr/ocaml-selectml

https://github.com/dyzsr/ocaml-selectml


Implementation
• Core implementation: ~ 1000 LOC in OCaml

• Test for validation: ~ 60 testcases, manually marked with the expected outputs 

• Flexible Customisations

üCustomise the semantics of Select Expression: rewrite the WHERE implementation to keep the falsas

üChange the input and output type of Select Expression: from 'a list to 'a array

üChange the intermediate type of Select Expression: from list to array. 

üGeneralization with Functors: to deal with both list type and array type. 

This does not type check!!!

https://github.com/dyzsr/ocaml-selectml

https://github.com/dyzsr/ocaml-selectml


Possible More Features
1. Joins ⇔ Cartesian product + filter: may reduce memory consumption

2. Window Functions
• They are like aggregate functions, but without causing rows to become grouped into a single output 
• Additional window functions: LEAD, LAG, RANK, … 



Possible Optimizations
1. Rule-based optimisation

• Eliminate unnecessary plans

• Push down filters

2. Cost-based optimisation

• Select the optimal algorithm for a query plan, based on the runtime information of data

3. Indexes

• Optimising table scan

• May require modifications 

on the OCaml type system



Create Database 
• From REPL (Read–eval–print loop) to Database

• Behaviors

• #CREATE introduces a top-level variable xs of type (int * int) table 

• #INSERT inserts two new rows (1,2), (3,4) to xs

• #UPDATE updates xs by setting increasing the first column by 1



Conclusions
• SelectML = OCaml + Select Query

• Language Design: Select Expression & Aggregate functions

• Semantics: Typing & Planning rules & Translation schema

• Implementation: Different Flexible Customisations

• More possible features and future work

• Joins, window functions, optimisations, indexes

• Connection to database via libraries such as 'caqti' with 'postgresql' database



Conclusions
• SelectML = OCaml + Select Query

• Language Design: Select Expression & Aggregate functions

• Semantics: Typing & Planning rules & Translation schema

• Implementation: Different Flexible Customisations

• More possible features and future work

• Joins, window functions, optimisations, indexes

• Connection to database via libraries such as 'caqti' with 'postgresql' database

Thanks!


