
Arrowized FRP Abstraction for Functional IoT Programs

Yahui Song and Wei-Ngan Chin

We start with reading from the world and end with writing to the world. Inside of this functional reactive IoT

system, we only have pure functions and data streams pushing the side-effects to the edge of the system.

• Raspberry Pi 3

• Energy automation examples

• https://youtu.be/p3CbJI8lLIs

EXAMPLE – ENERGY AUTOMATION

EXPERIMENTS

SIGNAL STREAM GRAPHS

We propose a practical Arrowized Functional Reactive Programming(AFRP) abstraction and a prototype of

the embedded domain-specific language (EDSL) in Haskell for Internet of Things (IoT) development which

guides IoT developers to write high-order FRP programs directly.

• Immutability and static checking of purely functional programming are good for program reliability and

maintainability.

• Continues time-varying values in FRP can be neatly mapped into IoT systems.

• Arrowized FRP further tackles the biggest drawback “space leak” problem of classical FRP.

Altogether, providing this abstraction not only simplifies the complex task of building responsive and type-

safe IoT systems but also provides the ability to reason about IoT event streams.

Functional Reactive Programming works with mutable values by recasting them as time-varying values,

capturing the temporal aspect of mutability. FRP originally composes two particular abstractions: a

continuous modelling of behaviors, and discrete reactive events from users or processes.

OVERVIEW

FRP & Arrowized FRP

{yahuis, chinwn}@comp.nus.edu.sg.

IoT system

Pure functions

The World

Side Effects

Functions

Functions

Functions

Stream

Stream

Stream

Stream

Stream

Assuming there is a dependency between temperature and the air conditioner (AC) such as if the

temperature rose too high, the AC would be turned on automatically. From this functionality, we may

abstract two modules, one is Sensor, one is AC, and the update method is needed to be defined.

REACTIVE PROGRAMMING & INTERNET OF THINGS

Read

Write

This embedded domain-specific language (EDSL) only expose 3 functions for developers to fill up: Model,

Update and Signal Generator.

EDSL DESIGN
Passive Programming Reactive Programming

• Update method is defined in the Sensor module

• Remote setters and updates

• Sensor module is responsible for changes

• AC has no awareness on the dependence

• Update method is defined in the AC module

• Events, observations and self-updates

• AC module is responsible for changes

• Easy to track/add dependencies on AC module

!"#$%&'() = +&," →)

.%"/0) = [(+&,",))]

.%"/0) ≈ !"#$%&'((7$89"))

:&;/$<) = +&," →)

:=) > = :&;/$<) → :&;/$< >

IF < 20 AC OFF

Model Update
Signal

Generator

World

Though there is no absolute goodness or badness between these two styles, in real cases, no matter for

debugging or extending the system, we care more “How does this module work?", which is easy to be

answered in reactive programming.

continuous

discrete

Arrowized FRP

Classical FRP

Arrowized FRP rules out the “space leak” of functional programming by rewriting the signal functions as

functions from one signal to another signal.

data Signal a = Signal {func :: Time -> a}

type Time = Double

type Temperature = Signal Float

type AC = Signal Bool

Each temperature is a discrete Event while the state of the AC is a continuous Behavior.

(value) V, W ∷= () | c | x | λ xA.M | <V, W> | i

(program) M, N ∷= V | MN | op(M)

| if M then M1 else M2

| let x = M1
in M2

| lift M1 M2 M3 A → C → Dignal A → Dignal C

| foldp M1 M2 M3 A → C → C → C → Dignal A → Dignal C

J ∈ ℝ ∪ NOOPQRJ S ∈ TRU V ∈ WJXYZ

Syntax

[∷ YJVZ JY\]QU bool | [→ [a

b ∷ signal [[→ b b → ba

d ∷ [| b

Type System

e ⊢ () : unit

UNIT

e ⊢ n : number

NUMBER

e ⊢ n : bool

BOOL

e ⊢ x : d

VAR
e (x) = d

e ⊢ gx : d.e : d → d’

LAMBDA
e, x : d ⊢ e : d'

e ⊢ let x = e1 in e2 : d’

LET
e ⊢ e1 : d e, x : d ⊢ e2 : d’

e ⊢ h: signal [

INPUT
e (h) = [

e ⊢ e1 e2 : d’

APPLICATION
e ⊢ e1 : d → d’ e ⊢ e2 : d

e ⊢ liftn e e1 … en : signal [

LIFT
e ⊢ e : [1 →…→ [n → [e ⊢ ei : signal [i ∀ i ∊ 1…n

e ⊢ foldpn efun eini enew : signal [’

FOLD
e ⊢ efun : [→ [’→ [’ e ⊢ eini : [’ e ⊢ enew : signal [

Type Judgments

