
Yahui Song, Xiang Gao, Wenhua Li, Wei-Ngan Chin, Abhik Roychoudhury

ProveNFix: Temporal Property guided Program Repair

1

Can temporal property analysis be modular?

“Each function is analysed only once and

can be replaced by their verified properties.”

2

Can temporal property analysis be modular?

“Each function is analysed only once and

can be replaced by their verified properties.”

3

Modular Analysis:

1. Assume-guarantee paradigm (divide and conquer)

2. A set of forward/backwards reasoning rules

Some Forward Reasoning Rules

4

|- { }

Entailment Checking

Can temporal property analysis be modular?

“Each function is analysed only once and

can be replaced by their verified properties.”

5

Modular Analysis:

1. Assume-guarantee paradigm (divide and conquer)

2. A set of forward/backwards reasoning rules

3. Entailment/Inclusion Checking : x > 1 ⊑ x > 0

Can temporal property analysis be modular?

“Each function is analysed only once and

can be replaced by their verified properties.”

Three main difficulties：

1. Temporal logic property entailment checker.

2. Writing temporal specifications for each function is tedious and challenging.

3. The classic pre/post-conditions is not enough, e.g.,

“some meaningful operations can only happen if the return value of loading the certificate is positive”

6

Future-condition

Future-condition

7

8

Future-condition vs. Post-condtion ?

9

Future-condition vs. Post-condtion ?

Future-condition based modular analysis

A collection of
specifications

Entailment Checking

10

Future-condition based modular analysis

A collection of
specifications

Entailment Checking

11

Can temporal property analysis be modular?

“Each function is analysed only once and

can be replaced by their verified properties.”

Three main difficulties：

1. Temporal logic property entailment checker.

2. Writing temporal specifications for each function is tedious and challenging.

3. The classic pre/post-conditions is not enough, e.g.,

“some meaningful operations can only happen if the return value of loading the certificate is positive”

Future-condition!

12

Specification inference via bi-abduction

13

Specification inference via bi-abduction

14

Specification inference via bi-abduction

15

Specification inference via bi-abduction

Failed entailment: true ∧ Ɛ ⊑ ptr≠null ∧ 𝓕 (free(ptr))

16

Can temporal property analysis be modular?

1. Temporal logic property entailment checker.

2. Writing temporal specifications for each function is tedious and challenging.

3. The classic pre/post-conditions is not enough, e.g.,

“some meaningful operations can only happen if the return value of loading the certificate is positive”

Primitive spec + spec inference!

“Each function is analysed only once and

can be replaced by their verified properties.”

Three main difficulties：

Future-condition!

17

Term rewriting system for regular expressions

• Flexible specifications, which can be combined with other logic;

• Efficient entailment checker with inductive proofs.

18

Term rewriting system for regular expressions

• Flexible specifications, which can be combined with other logic;

• Efficient entailment checker with inductive proofs.

Examples:

x>2 ∧ E ⊑ x>1 ∧ (E ∨ F)

x>0 ∧ E ⊑ x>1 ∧ (E ∨ F)

true ∧ E ⊑ true ∧ (E . F)

(a ∨ b)★⊑ (a ∨ b ∨ bb)★ [Reoccur]

ɛ ⋅ (a ∨ b)★⊑ ɛ ⋅ (a ∨ b ∨ bb)★

a ⋅ (a ∨ b)★⊑ (a ∨ b ∨ bb)★ b ⋅ (a ∨ b)★ ⊑ …

(a ∨ b)★⊑ (a ∨ b ∨ bb)★

[Reoccur]

19

Can temporal property analysis be modular?

A term rewriting system for regular expressions

Can!
“Each function is analysed only once and

can be replaced by their verified properties.”

1. Temporal logic property entailment checker.

2. Writing temporal specifications for each function is tedious and challenging.

3. The classic pre/post-conditions is not enough, e.g.,

“some meaningful operations can only happen if the return value of loading the certificate is positive”

Primitive spec + spec inference!

Three main difficulties：

Future-condition!

20

Failed entailment: true ∧ Ɛ ⊑ ptr≠null ∧ 𝓕 (free(ptr))

int* ptr1 = ptr;

Failed entailment: true ∧ Ɛ ⊑ ptr≠null ∧ 𝓕 (free(ptr))

Automated repair via deductive synthesis

⇒ synthesis(ptr≠null ∧ _^* . (free(ptr))) ⇒

Example: true ∧ Ɛ ⊑ ptr≠null ∧ _^* . (free(ptr))

Automated repair via deductive synthesis

⇒ synthesis(ptr≠null ∧ _^* . (free(ptr))) ⇒

Example: true ∧ Ɛ ⊑ ptr≠null ∧ _^* . (free(ptr))

❖Only supporting inserting/deleting calls.

❖Do need re-analysis.

Experiment 2: Repairing bugs

❖ 90% fix - null pointer dereferences,

❖ 79% fix - memory leaks

❖ 100% fix - resource leaks. 27

Experiment 4: usefulness of spec inference

❖ 2 predefined primitive specs, OpenSSL-3.1.2, 556.3 kLoC,

❖ 143.11 seconds to generate future-conditions for 128 OpenSSL APIs

❖ Example: SSL_CTX_new (meth) ; // future : ((ret=0) /\ return (ret))

28
* Gu, Zuxing, et al. "SSLDoc: Automatically Diagnosing Incorrect SSL API Usages in C Programs." SEKE. 2019.

• Compositional static analyzer via temporal properties.

• Specified 17 APIs; found 515 bugs from 1 million LOC; (on average) 90% fix rate.

• Specification: a novel future-condition.

• Specification inference via bi-abduction.

• The inferred spec can be used to analysis protocol applications, e.g., OpenSSL.

Summary

29

Take away

❖Specify a small set of properties once and analyse/repair a large number of programs

❖Specification inference enabled by projecting global spec to local spec.

	FSE24
	Slide 1
	Slide 2: Can temporal property analysis be modular?
	Slide 3: Can temporal property analysis be modular?
	Slide 4: Some Forward Reasoning Rules
	Slide 5: Can temporal property analysis be modular?
	Slide 6: Can temporal property analysis be modular?
	Slide 7: Future-condition
	Slide 8: Future-condition vs. Post-condtion ?
	Slide 9: Future-condition vs. Post-condtion ?
	Slide 10: Future-condition based modular analysis
	Slide 11: Future-condition based modular analysis
	Slide 12: Can temporal property analysis be modular?
	Slide 13: Specification inference via bi-abduction
	Slide 14: Specification inference via bi-abduction
	Slide 15: Specification inference via bi-abduction
	Slide 16: Specification inference via bi-abduction
	Slide 17: Can temporal property analysis be modular?
	Slide 18
	Slide 19
	Slide 20: Can temporal property analysis be modular?
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Automated repair via deductive synthesis
	Slide 26: Automated repair via deductive synthesis
	Slide 27: Experiment 2: Repairing bugs
	Slide 28: Experiment 4: usefulness of spec inference
	Slide 29: Summary

