
Future Conditions

Temporal Property guided Program Analysis, Repair and Verification

Yahui Song

Research Fellow @ National University of Singapore (NUS)

June 2025

1

• PhD (2018 Aug – 2022 Dec)
Thesis: Symbolic Temporal Verification Techniques with Extended Regular Expressions

Keywords: Modularly (Scalability), Expressive Specification, Hoare-style Verification (source code level)

 Event-based reactive systems [ICFEM 2020]

 Synchronous languages like Esterel [VMCAI 2021]

 User-defined algebraic effects and handlers [APLAS 2022]

 Real-time systems [TACAS 2023]

• Research Fellow (2023 Jan – now)
Staged Specification Logic (Regular expression + Separation logic):

 Higher-order Imperative Programs [FM 2024]; Algebraic Effects and Handlers [ICFP 2024]

Temporal Property guided Program Analysis, Repair and Verification:

ProveNFix: Temporal Property guided Program Repair [FSE 2024]

Specifying and Verifying Future Conditions [Under Submission]

My Research

Applications

2

Yahui Song, Xiang Gao, Wenhua Li, Wei-Ngan Chin, Abhik Roychoudhury

17th July @ FSE 2024, Porto de Galinhas, Brazil

ProveNFix: Temporal Property guided Program Repair

3

Can temporal property analysis be modular?

“Each function is analysed only once and

can be replaced by their verified properties.”

4

Can temporal property analysis be modular?

“Each function is analysed only once and

can be replaced by their verified properties.”

Three main difficulties：

❑ Temporal logic entailment checker.

❑Writing temporal specifications for each function is tedious and challenging.

❑ The classic pre/post-conditions is not enough, e.g.,

“some meaningful operations can only happen if the return value of loading the certificate is positive”

5

Future-condition

Future-condition

6

Future-condition based compositional analysis

A collection of specificationsEntailment Checking

7

[FV-Call]

A collection of specificationsEntailment Checking

8

Future-condition based compositional analysis

[FV-Call]

Can temporal property analysis be modular?

“Each function is analysed only once and

can be replaced by their verified properties.”

Three main difficulties：

❑ Temporal logic entailment checker.

❑Writing temporal specifications for each function is tedious and challenging.

✓ The classic pre/post-conditions is not enough, e.g.,

“some meaningful operations can only happen if the return value of loading the certificate is positive”

Future-condition!

9

Specification inference

10

Specification inference

Failed entailment: true ∧ Ɛ ⊑ ptr≠null ∧ 𝓕 (free(ptr))

11

Can temporal property analysis be modular?

❑ Temporal logic entailment checker.

✓Writing temporal specifications for each function is tedious and challenging.

✓ The classic pre/post-conditions is not enough, e.g.,

“some meaningful operations can only happen if the return value of loading the certificate is positive”

Primitive spec + spec inference!

“Each function is analysed only once and

can be replaced by their verified properties.”

Three main difficulties：

Future-condition!

12

Term rewriting system for regular expressions

• Flexible specifications, which can be combined with other logic;

• Efficient entailment checker with inductive proofs.

13

Term rewriting system for regular expressions

• Flexible specifications, which can be combined with other logic;

• Efficient entailment checker with inductive proofs.

Examples:

x>2 ∧ E ⊑ x>1 ∧ (E ∨ F)

x>0 ∧ E ⊑ x>1 ∧ (E ∨ F)

true ∧ E ⊑ true ∧ (E . F)

(a ∨ b)★⊑ (a ∨ b ∨ bb)★ [Reoccur]

ɛ ⋅ (a ∨ b)★⊑ ɛ ⋅ (a ∨ b ∨ bb)★

a ⋅ (a ∨ b)★⊑ (a ∨ b ∨ bb)★ b ⋅ (a ∨ b)★ ⊑ …

(a ∨ b)★⊑ (a ∨ b ∨ bb)★

[Reoccur]

14

Can temporal property analysis be modular?

A term rewriting system for regular expressions

Can!
“Each function is analysed only once and

can be replaced by their verified properties.”

✓ Temporal logic entailment checker.

✓Writing temporal specifications for each function is tedious and challenging.

✓ The classic pre/post-conditions is not enough, e.g.,

“some meaningful operations can only happen if the return value of loading the certificate is positive”

Primitive spec + spec inference!

Three main difficulties：

Future-condition!

15

Experiment 1: detecting bugs
❖ 17 predefined primitive specs.

❖ ProveNFix is finding 72.2%

more true bugs, with a 17%

loss of missing true bugs.

16

Experiment 2: Repairing bugs

❖ 90% fix - null pointer dereferences,

❖ 79% fix - memory leaks

❖ 100% fix - resource leaks. 19

Experiment 4: usefulness of spec inference

❖ 2 predefined primitive specs, OpenSSL-3.1.2, 556.3 kLoC,

❖ 143.11 seconds to generate future-conditions for 128 OpenSSL APIs

❖ Example: SSL_CTX_new (meth) ; // future : ((ret=0) /\ return (ret))

20

✓ A novel future-condition

✓ Compositional temporal analysis

✓ Light-weight specification inference

✓ Fast and most-automated

✓ Proof guided repair

✓ Large-scale usability

21

❑ Handle loops via unrolling

❑ Inefficient (O(n2)) entailment checking

❑ On-demand path pruning

❑ False negatives

❑ No machine checkable certification

❑ Limited expressiveness

Summary

Contributions Limitations

Yahui Song, Darius Foo, Wei-Ngan Chin

(Under Submission)

Specifying and Verifying Future Conditions (FCs)

22

The existing solution

23

Three main limitations：

❑ Inefficient (O(n2)) entailment checking

❑ Handle loops via unrolling

❑ Bug-finding (no incorrectly flagged safe code) over soundness (no missed violations)

[FV-Call]

Inefficient (O(n2)) entailment checking

24

Use-after-free!

A use-after-free bug recorded from CWE-416

Inefficient (O(n2)) entailment checking

25

Use-after-free!

[FV-Call]

26

malloc(buf2).free(buf2).malloc(buf3).strncpy(buf2).free(buf1).free(buf3) ⊑ F(free(buf1))

free(buf2).malloc(buf3).strncpy(buf2).free(buf1).free(buf3) ⊑ F(free(buf2))

malloc(buf3).strncpy(buf2).free(buf1).free(buf3) ⊑ G (! _ (buf2))

strncpy(buf2).free(buf1).free(buf3) ⊑ F(free(buf3))

free(buf3) ⊑ G (!_(buf1))

empty ⊑ G (!_(buf3))

Use-after-free!

[FV-Call]

Inefficient (O(n2)) entailment checking

28

A new solution for reasoning FCs

29

A new solution for reasoning FCs

❖ Linear trace processing

❖ Embed FCs into program states

❖ Trace conjunction + subtraction

The existing solution

30

Three main limitations：

✓ Inefficient entailment checking

❑ Handle loops via unrolling

❑ Bug-finding (no incorrectly flagged safe code) over soundness (no missed violations)

[FV-Call]

Embed FCs into the states + Trace subtraction

Predicates for Bags of Traces and Future Conditions

31

A false negative example from ProveNFix

Predicates for Bags of Traces and Future Conditions

32

When reasoning about main():

When reasoning about mallocN():

Predicates for Bags of Traces and Future Conditions

33

The existing solution

34

Three main limitations：

✓ Inefficient entailment checking

✓ Handle loops via unrolling

❑ Bug-finding (no incorrectly flagged safe code) over soundness (no missed violations)

[FV-Call]

Embed FCs into the states + Trace subtraction

Predicates for bags of traces and FCs

Soundness Formalization

35

• An instrumented semantics for the target language:

• Semantic model of trace specifications:

• A set of forward verification rules:

stack execution trace

It only sound to strengthen the future conditions, so that we do not miss any violations.

The existing solution

36

Three main limitations：

✓ Inefficient entailment checking

✓ Handle loops via unrolling

✓ Bug-finding (no incorrectly flagged safe code) over soundness (no missed violations)

[FV-Call]

Embed FCs into the states + Trace subtraction

Predicates for bags of traces and FCs

Coq formalization

Experimental Results

37

Write these future conditions manually

Experimental Results

38

False positive due to the limited expressiveness:

✓ A novel future-condition

✓ Compositional temporal analysis

✓ Light-weight specification inference

✓ Fast and most-automated

✓ Proof guided repair

✓ Large-scale usability

39

✓ Handle loops via recursive predicates

✓ Efficient (linear) entailment checking

✓ Sound weakening when path explosion

✓ No false negatives

❑ No machine checkable certification

❑ Limited expressiveness

Future Conditions

Bug Finding and Repair Verification

Thanks for

listening!

	Default Section
	Slide 1: Future Conditions Temporal Property guided Program Analysis, Repair and Verification
	Slide 2: My Research
	Slide 3
	Slide 4: Can temporal property analysis be modular?
	Slide 5: Can temporal property analysis be modular?
	Slide 6: Future-condition
	Slide 7: Future-condition based compositional analysis
	Slide 8: Future-condition based compositional analysis
	Slide 9: Can temporal property analysis be modular?
	Slide 10: Specification inference
	Slide 11: Specification inference
	Slide 12: Can temporal property analysis be modular?
	Slide 13
	Slide 14
	Slide 15: Can temporal property analysis be modular?
	Slide 16: Experiment 1: detecting bugs
	Slide 19: Experiment 2: Repairing bugs
	Slide 20: Experiment 4: usefulness of spec inference
	Slide 21
	Slide 22
	Slide 23: The existing solution
	Slide 24: Inefficient (O(n2)) entailment checking
	Slide 25: Inefficient (O(n2)) entailment checking
	Slide 26: Inefficient (O(n2)) entailment checking
	Slide 28: A new solution for reasoning FCs
	Slide 29: A new solution for reasoning FCs
	Slide 30: The existing solution
	Slide 31: Predicates for Bags of Traces and Future Conditions
	Slide 32: Predicates for Bags of Traces and Future Conditions
	Slide 33: Predicates for Bags of Traces and Future Conditions
	Slide 34: The existing solution
	Slide 35: Soundness Formalization
	Slide 36: The existing solution
	Slide 37: Experimental Results
	Slide 38: Experimental Results
	Slide 39

