Automated Verification for Real-Time Systems

via Implicit Clocks and an Extended Antimirov Algorithm
(Supplementary Material (Appendix))

Yahui Song and Wei-Ngan Chin

School of Computing, National University of Singapore, Singapore
{yahuis,chinwn}@comp.nus.edu.sg

A Operational Semantics Rules for the Basic Statements

Rules [v], [assign], and [ev] are axioms, which terminate immediately. We use
Sla] to update the environment S with the assignment a.

T T . * A(”) *
(S, v)=(S,v) [v] (S,a)=(S[a], () [assign] (S, event[A(v,a”)])—=(S[a”],()) [ev]
In conditionals, if v is True in the environment, the first branch is executed.
Otherwise, the other branch is executed. The rule [call] retrieves the function
body e of mn from the program, and executes e with instantiated arguments.

[cond1] [cond] [call] z
S(v) = True S(v) = False mnz* {e}eP (S, ev*/z*])—=(S',€)
(S.if v er e2) (S, er) (S,if v er e2) (S, e2) (S, mn(v*)) 5 (S, ¢')

Rules [seq;] and [segz] state that e; takes the control when it still can behave;

then the control transfers to e, when e; terminates. In process e;||eg, if any of
e; or eg can proceed, they proceed on their own. Rule [pars] states that if both
branches can proceed with the same label, they proceed together.

(S,e1) 5 (S €h) (S,e1) & (S e))

[seq:] G [seqz] [par]
(S, e15e5)5(S, e} e2) (S, v;e2) (S, ez2) (S, erlle2) (S, ¢ ||es)
l ’ l / ! /
(87 61) —>l (S 7”) [pa’f‘g] (87 61) - (87 61) l (57 62) - (8, 62) [pa’l‘g]
(S, erlles) = (87, e2) (S, erlles) = (S, eflles)

B The Complete Forward Rules

Rule [FV-Value] obtains the next state by inheriting the current state. Rule
[F'V -Event] concatenates the event to the current state and update the environ-
ment for the subsequent statements.

2 Song, Y., Chin, W.N.

0'=0-A(v) Sla*|F{m 0} e {ll, O}
S+ {m, 0} event[A(v,a*)];e {II, O}

[F'V-Value]

St {0} v {r,0} [FV-Event]

Rule [FV-Call] first checks whether the instantiated precondition of callee,
Qe [v*/2*], is satisfied by the current program state. When the check is suc-
ceeded, the final states are formed by concatenating the instantiated postcondi-
tion to the current states. P denotes the program being checked.

mn z* {req Ppre ens Ppos} {e} €P
St A{m, 0} C Ppre[v”/27] Op = {m, 0} - Ppost[v”/27]
S+ {m, 0} mn(v*) {®}

[FV-Call]

Rule [F'V-Cond-Local] computes an over-approximation of the program states,
by adding different constraints into different branches. = A v enforces v into the
pure constraints of every trace in the state, same for = A —v. Rule [FV-Cond-Global]
is applied when v is a global variable, the constraints are inserted as 7(m) events
into the traces, which are determined when other threads are parallel composed.

[F'V-Cond-Local|
SE{rnAv,0} es {II,60:} SE{nA-w,0} ex {112,602} (v is local)
SE{m, e} if v then e; else e {II;,0;} U{ll, Oz}
[FV-Cond-Global]
St A{m e} er {II,601} St A{m, 0} e {112,602} (v is global)
St {r, 0} if v then e; else ex {II;,0 - T(v=True) - ©; } U{Ils,0 - 7(v=False) - Oz}

[FV-Meth] initializes the state using the declared precondition, accumulates
the effects from the method body, and checks the inclusion between the final
state {II, @} and the concatenation of the pre- and postcondition!. [FV-Guard]
computes the effects of e and concatenates (v="True)? before e’s effects.

[F'V-Meth| [F'V-Guard)
'_{(I)PTS} € {HvQ} {H,@} Eq)PTE'q)POSt Sl‘{ﬂ',ﬁ} € {H,@}
St mn z* {req Pprc ens Dpos: } {e} St A{m, 0} [v]le {I1,0- (v=True)?6}

[FV-Seq] computes {II;,0;} from e;, then further gets {IIz, ©2} by continu-
ously computing the behaviors of ez, to be the final state. [FV-Par] computes
behaviors for e; and ey independently, then parallel merges the effects.

SH{m, 0} er {II,0:} SH{II,,0:} ez {II2,0:}
SE{nm, 0} er;es {Il2, 02}
S H{m, 0} er {II,,6.} S H{m, 0} ez {II2,02}
St {m, 0} eslles {II; NI, O1]|O2}

[F'V-Seq]

[FV-Par]

I Note that for succinctness, the user-provided ®,,s; only denotes the extension of the
effects from executing the method body.

Automated Verification for Real-Time Systems 3

C Soundness of the Forward Rules

Given any system configuration (=(S, e), by applying the operational semantics
rules, if (S, e)—=*(S’, v) has execution time d and produces event sequence ¢; and
for any history effect 7A@, such that d;, S, ¢;=(wA8), and the forward verifier
reasons SH{m,0}e{Il, O}, then I(n'A0") € {II, O} such that (d;+d),S’, (p;++p)
E=(m'A).

Proof. By induction on the structure of e:

1. Value: (S, v) (S, v) [v]

When ((S,v)—(S,v)), it takes 0 time and produces am empty sequence []. By
rule [FV-Value], S+ {m, 0} v {m, 0}, then the post effect is the witness that
(di+0),S, (p1++]]) E 7A0 is valid.

2. Event: (S, event[A(v,a*)])M(S[a*],()) [ev]

When (S, event[A(v, a™)])—="(S[a’], (), it takes 0 time and produces the event se-
quence [A(v, @*)]. By rule [FV-Value], S + {r, 0} A(v,a*) {m, 6 A(v,a*)}, then the
post effect is the witness that (d;+0),S[a*], (p1++[A(v,a™)]) E T A0 - A(v, ™).

3. Guard:

S = (v=true) (gud] S [~ (v=true)
(S, [vle) = (S, e) (S, [vle) = (S, [v]e)

[guz]

When (S, [v]e)—=*(S,v'), it produces the sequence p(e). By [FV-Guard],
St {m, 0} [v]e {II,0 - (v=True)?0©} where S+ {m,e}e{ll, ©}. Then the post effect
is the witness that (d;+dwait+de), S, (p1++[p(e)]) E I A0 - (v=True)?O is valid.

4. Delay:

d<wv
(S, delay[v]) % (S, delay[v-d))

[delay;]

delays
(S, aetayl0) 5 (s, ()

When (8, delay[v])—=*(S, (), by applying rules [delay;], [delays], it produces
am empty sequence [|, and takes time S(v). By [FV-Delay], S - {n,0} delay[v]
{nA(t=d), 0 - e#t}. Then the post effect TA(t=d) A0 - e#t is the witness that
(d1+8(0)), S, (p1++]]) E mA(t=v) A 0 - et is valid.

5. Timeout:

(S, ez)i(sl,eé) [tol] (S, 61);(5”6;) [tOQ}
(S, er timeout|v] 62)A>(S’, er) (S, er timeout[v] e2)>(S', ¢} timeout[v]es)
(S, 61) — (S, 63) (dgv) [t03] [to»d

(S, e; timeout|v] e_@)i>(S, e} timeout|v-d]ez) (S, er timeout[0]ez) (S, ez2)

4 Song, Y., Chin, W.N.

When (S, e; timeout[v] eg)—*(S’,v’), there are two possibilities:
- e; started before time bound S(v): by applying rules [toz], [tos] and [to;], it
produces the concrete sequence [4; tl(¢(e;))], and A takes ¢; time-units, which
is less than S(v). By [FV-Timeout], S F {m,0} e1 timeout[v] ex {[l1At1<v,0 -
(hd(On)#t1)-tl(61)} where S+ {m, e}e;{II;, ©;}. Then the post effect is the witness
SUCh that (d1+t1),5l, (Lp1++[A; tl(@(ez))D ': H1 /\(t] <’U) NG - (hd(@])#tl) . tl(@1)
- ey never started, by applying rules [to,], it takes time d and produces the con-
crete sequence [p(ez)]. By [FV-Timeout], S F {m, 0} e; timeout[v] es {IIaAta=v, -
(e#ts) - Ox} where S+ {m, etea{Ilz, O2}. Then the post effect is the witness such
that (d]"‘d),sl7 ((p1++[§p(€2)])): s Nte=v A O - (6#152) - O is valid.

6. Deadline:

A/r AN
(876)—>(8,€) [ddll}
(S,deadline[v] AL) (8’,deadline[v] e’)

e)
(S.e) % (S,¢) (d<v)
(S,deadline[v]) % (S, deadline[v-d] ¢’)

(S,e) 5 (S, v)
(S,deadline[v] €) & (S, v)

[ddls] [ddls]

When (S, deadline[v] e)—=*(S',v'), by applying rules [ddl;], [ddlz] and [ddls],
it produces the concrete sequence [¢(e)], and it takes d time-units which is less
than S(v). By [FV-Deadline], S + {n,0} deadline[v] e {II1A(t<v), 8- (O1#t)} where
St {m, ete{ll;, O;}. Then the post effect is the witness such that
(di+d), 8", (p1++[p(e)]) = HIA(E<) A0 - (O#t) is valid.

7. Interrupt:

A/T ! ’
(87 81) R (S 761) [intz]
(S, er interrupt|v] ez) Ai) (S, e} interrupt|v] ez)
l /
(S,e1) = (S ,U)l [ints] T [ints]
(S, e; interrupt[v] e2)—(S’, v) (S, er interrupt[0] e2) — (S, e2)

When (S, e; interrupt{v] e2)—*(S',v'), by applying rules [int;], [intz] and
[ints], it produces many possible sequences, which depends of how many events
e; can trigger before time bound v. For example, - when there is only one event
triggered before the time bound, by Algorithm 1, A=wA(t<v) A 8- hd(p(e;))#t.
By [FV-Interrupt], S H{m, 0} e1 interrupt|v] e2 {II',0-O'} where S+ {A} es {II',0’}.
Then the post effect is the witness such that
(di+t+de2), S', (@1 ++[hd(p(er))|++p(e2)]) E At < v) A0 - hd(p(er))#t - O 1s valid.
Similar proofs for other possibilities.

Automated Verification for Real-Time Systems 5
8. Conditional:

S(v) = True
(87 Zf v e 62);(87 61)

S(v) = False
(S,if v er e2) (S, ez2)

[cond;]

[conds]

When (S, if v ep ea)—=*(S',v'), there are two possibilities:

- when S(v)=True, it takes d.; time units and produces sequence varphi(e;).
By [FV-Cond-Local], S - {m,0} if v then e; else ex {II1,0 - T(v="True) - ©1} where
St {me} e {II;,0:}. Then the post effect is the witness such that
(di+de1), S, (p1++[p(er)]) |E 1,60 - T(v="True) - O; is valid.

- when S(v)=Fulse it takes d.p time units and produces sequence varphi(ez).
By [FV-Cond-Local], S+ {m,0} if v then e; else es {II2,0 - 7(v="True) - ©2} where
St {m e} es {IIz,O2}. Then the post effect is the witness such that
(d1+de2),8’, ((p1++[(p(€g)}) ': Hg,e . T(v:False) - Oy is valid.

9. Method Call:

mnz* {e}eP (S, e[v*/z*]) (S ¢')
(S, mn(v*)) 5 (S, ¢’)

[call]

When (S, mn(v*)—*(S’,v'), it takes d. time units and produces sequence
varphi(e). By [FV-Call], S + {m,0} mn(v*) {®;} where ®;={m, 0} - ®post[v*/x*].
The post effect is the witness of (d;+d.),S’, (p1++[p(e)]) E {7, 0} - Ppost[v*/T*].

D Termination of the TRS

The TRS is terminating.

Proof. Let Set[Z] be a data structure representing the sets of inclusions. We
use S to denote the inclusions to be proved, and H to accumulate ”inductive
hypotheses”, i.e., S, H € Set[Z]. Consider the following partial ordering > on
pairs <S7H> <51,H1> - <SQ,H2> iff |H1| < |H2‘ V (|H1| = |H2| A\ ‘S]l > |Sg|)

Here |X| stands for the cardinality of a set X. Let = denote the rewrite
relation, then =* denotes its reflexive transitive closure. For any given Sy, Hy,
this ordering is well founded on the set of pairs {(S, H) | (Sp, Hp)="(S, H)}, due
to the fact that H is a subset of the finite set of pairs of all possible derivatives
in initial inclusion. Inference rules in our TRS given in Sec.5 transform current
pairs (S, H) to new pairs (S’, H'). And each rule either increases |H| (Unfolding)
or, otherwise, reduces |S| (Axiom, Disprove, Prove), therefore the system is
terminating.

E Soundness of the TRS

For each inference rules, if inclusions in their premises are valid, and their side
conditions are satisfied, then goal inclusions in their conclusions are valid.

6 Song, Y., Chin, W.N.

Proof. By case analysis for each inference rules:

1. Axiom Rules:

d#£TAL

Bot-LH _—
[Bot-LHS] TFOZaAL

- Bot-RH
TFanlCo [Bot-RHS]

- It is easy to verify that antecedent of goal entailments in the rule [Bot-LHS] is
unsatisfiable. Therefore, these entailments are evidently valid.

- It is easy to verify that consequent of goal entailments in the rule [Bot-RHS] is
unsatisfiable. Therefore, these entailments are evidently invalid.

2. Disprove Rules:

Oy (01) N =07, (0 = t (0,) =
1 (01) 2 (62) [DISPRUVE] 1 T2 fs 7r,(1) {}
F|—7T1/\91,Z7r2/\92 I'Fa; N0 E oAby

[PROVE]

- It’s straightforward to prove soundness of the rule [DISPROVE], Given that 61 is
nullable, while 65 is not nullable, thus clearly the antecedent contains more event
traces than the consequent. Therefore, these entailments are evidently invalid.

3. Prove Rules:

(7l'1/\91 C 7T3/\93) el (7['3/\03 C 7T4/\04) el (71‘4/\04 C 7l'2/\92) el
I'Fr; N0 Eme ABs

[REOCCUR]

- To prove soundness of the rule [PROVE], we consider an arbitrary model, d, S, ¢
such that: d,S,¢ = m1 A 6. Given the side conditions from the promises, we
get d,S, ¢ = ma A 3. When the fst set of 0, is empty, 0; is possible L or € and
mo A B is nullable. For both cases, the inclusion is valid.

- To prove soundness of the rule [REOCCUR], we consider an arbitrary model,
d, S, ¢ such that: d,S, ¢ = m1 A 61. Given the promises that m A6 C w3 A 03, we
get d, S, ¢ |= 73 A 03; Given the promise that there exists a hypothesis m3 A3 C
w4 N\ Oy, we get d, S, ¢ = 74 A 04; Given the promises that w4 A 04 C w9 A 0o, we
get d, S, p |= w2 A 05. Therefore, the inclusion is valid.

4. Unfolding Rule:

I{:fstﬂ,1 (91) F’:F, (71'1/\01 C 7T2/\92) VheH. (Fl = Dzl (6'1) C D;? (92))
I'Fmp ANOLE o Abs

[UNFOLD]

- To prove soundness of [UNFOLD|, we consider an arbitrary model, dy, S, 1
and da, Sa, w2 such that: di,S1,p1 E m1 A6y and da, Sa, 2 |E 72 A 2. For an
arbitrary event h, let d}, S}, o1’ = b [m A 61]; and df, Sh, 2" = b7 ma A 62].

Automated Verification for Real-Time Systems 7

Case 1), h ¢ F, di, 1’ = L, thus automatically d, p1’ = Dy?(62);

Case 2), h € F, given that inclusions in the rule’s premise is valid, then
d/la S{’ 901/ ': D}Txr2 (02)'

By Definition 3, since for all h, Dy (61) T Dy?(62), the conclusion is valid.

All the inference rules used in the TRS are sound, therefore the TRS is sound.

