
Automated Verification for Real-Time Systems

via Implicit Clocks and an Extended Antimirov Algorithm
(Supplementary Material (Appendix))

Yahui Song and Wei-Ngan Chin

School of Computing, National University of Singapore, Singapore
{yahuis,chinwn}@comp.nus.edu.sg

A Operational Semantics Rules for the Basic Statements

Rules [v], [assign], and [ev] are axioms, which terminate immediately. We use
S[α] to update the environment S with the assignment α.

(S, v)
τ−→(S, v) [v] (S, α)

τ−→(S[α], ()) [assign] (S, event[A(v, α∗)])
A(v)−−−→(S[α∗], ()) [ev]

In conditionals, if v is True in the environment, the first branch is executed.
Otherwise, the other branch is executed. The rule [call] retrieves the function
body e of mn from the program, and executes e with instantiated arguments.

[cond1]
S(v) = True

(S, if v e1 e2)
τ−→(S, e1)

[cond2]
S(v) = False

(S, if v e1 e2)
τ−→(S, e2)

[call]

mnx∗ {e}∈P (S, e[v∗/x∗]) l−→(S ′, e′)

(S,mn(v∗))
l−→ (S ′, e ′)

Rules [seq1] and [seq2] state that e1 takes the control when it still can behave;
then the control transfers to e2 when e1 terminates. In process e1 ||e2 , if any of
e1 or e2 can proceed, they proceed on their own. Rule [par3] states that if both
branches can proceed with the same label, they proceed together.

(S, e1)
l−→ (S ′, e ′1)

(S, e1 ; e2)
l−→(S ′, e ′1 ; e2)

[seq1]
(S, v ; e2)

τ−→(S, e2)
[seq2]

(S, e1)
l−→ (S ′, e ′1)

(S, e1 ||e2)
l−→(S ′, e ′1 ||e2)

[par1]

(S, e1)
l−→ (S ′, v)

(S, e1 ||e2)
l−→ (S ′, e2)

[par2]
(S, e1)

l−→ (S, e ′1) (S, e2)
l−→ (S, e ′2)

(S, e1 ||e2)
l−→ (S, e ′1 ||e ′2)

[par3]

B The Complete Forward Rules

Rule [FV -Value] obtains the next state by inheriting the current state. Rule
[FV -Event] concatenates the event to the current state and update the environ-
ment for the subsequent statements.

2 Song, Y., Chin, W.N.

S ` {π, θ} v {π, θ} [FV -Value]
θ′=θ · A(v) S[α∗] ` {π, θ′} e {Π ,Θ}
S ` {π, θ} event[A(v , α∗)]; e {Π ,Θ} [FV -Event]

Rule [FV -Call] first checks whether the instantiated precondition of callee,
Φpre [v∗/x∗], is satisfied by the current program state. When the check is suc-
ceeded, the final states are formed by concatenating the instantiated postcondi-
tion to the current states. P denotes the program being checked.

mn x∗ {req Φpre ens Φpost} {e} ∈ P
S ` {π, θ} v Φpre [v∗/x∗] Φf = {π, θ} · Φpost [v

∗/x∗]

S ` {π, θ} mn(v∗) {Φf }
[FV -Call]

Rule [FV -Cond-Local] computes an over-approximation of the program states,
by adding different constraints into different branches. π ∧ v enforces v into the
pure constraints of every trace in the state, same for π ∧ ¬v . Rule [FV -Cond-Global]

is applied when v is a global variable, the constraints are inserted as τ(π) events
into the traces, which are determined when other threads are parallel composed.

[FV -Cond-Local]
S ` {π ∧ v, θ} e1 {Π1, Θ1} S ` {π ∧ ¬v, θ} e2 {Π2, Θ2} (v is local)

S ` {π, ε} if v then e1 else e2 {Π1 ,Θ1} ∪ {Π2 ,Θ2}
[FV -Cond-Global]

S ` {π, ε} e1 {Π1, Θ1} S ` {π, θ} e2 {Π2, Θ2} (v is global)

S ` {π, θ} if v then e1 else e2 {Π1 , θ · τ(v=True) ·Θ1} ∪ {Π2 , θ · τ(v=False) ·Θ2}

[FV -Meth] initializes the state using the declared precondition, accumulates
the effects from the method body, and checks the inclusion between the final
state {Π ,Θ} and the concatenation of the pre- and postcondition1. [FV -Guard]

computes the effects of e and concatenates (v=True)? before e’s effects.

[FV -Meth]
` {Φpre} e {Π,Θ} {Π,Θ} v Φpre · Φpost
S ` mn x∗ {req Φpre ens Φpost} {e}

[FV -Guard]
S ` {π, ε} e {Π,Θ}

S ` {π, θ} [v]e {Π , θ · (v=True)?Θ}

[FV -Seq] computes {Π1 ,Θ1} from e1 , then further gets {Π2 ,Θ2} by continu-
ously computing the behaviors of e2 , to be the final state. [FV -Par] computes
behaviors for e1 and e2 independently, then parallel merges the effects.

S `{π, θ} e1 {Π1, Θ1} S `{Π1, Θ1} e2 {Π2, Θ2}
S ` {π, θ} e1 ; e2 {Π2 ,Θ2}

[FV -Seq]

S `{π, θ} e1 {Π1, Θ1} S `{π, θ} e2 {Π2, Θ2}
S ` {π, θ} e1 ||e2 {Π1 ∧Π2 ,Θ1 ||Θ2}

[FV -Par]

1 Note that for succinctness, the user-provided Φpost only denotes the extension of the
effects from executing the method body.

Automated Verification for Real-Time Systems 3

C Soundness of the Forward Rules

Given any system configuration ζ=(S, e), by applying the operational semantics
rules, if (S, e)→∗(S ′, v) has execution time d and produces event sequence ϕ; and
for any history effect π∧θ, such that d1 ,S, ϕ1 |=(π∧θ), and the forward verifier
reasons S`{π, θ}e{Π ,Θ}, then ∃(π′∧θ′) ∈ {Π ,Θ} such that (d1+d),S ′, (ϕ1++ϕ)
|=(π′∧θ′).

Proof. By induction on the structure of e:

1. Value: (S, v)
τ−→(S, v) [v]

When ((S, v)→(S, v)), it takes 0 time and produces am empty sequence []. By
rule [FV-Value], S ` {π, θ} v {π, θ}, then the post effect is the witness that
(d1+0),S, (ϕ1++[]) |= π∧θ is valid.

2. Event: (S, event[A(v , α∗)])
A(v)−−−→(S[α∗], ()) [ev]

When (S, event[A(v, α∗)])→∗(S[α∗], ()), it takes 0 time and produces the event se-
quence [A(v , α∗)]. By rule [FV-Value], S ` {π, θ} A(v, α∗) {π, θ · A(v, α∗)}, then the
post effect is the witness that (d1+0),S[α∗], (ϕ1++[A(v , α∗)]) |= π ∧ θ · A(v , α∗).

3. Guard:

S |= (v=true)

(S, [v]e)
τ−→ (S, e)

[gu1]
S 6|= (v=true)

(S, [v]e)
τ−→ (S, [v]e)

[gu2]

When (S, [v]e)→∗(S, v′), it produces the sequence ϕ(e). By [FV -Guard],
S ` {π, θ} [v]e {Π, θ · (v=True)?Θ} where S ` {π, ε}e{Π ,Θ}. Then the post effect
is the witness that (d1+dwait+de),S, (ϕ1++[ϕ(e)]) |= Π ∧ θ · (v=True)?Θ is valid.

4. Delay:

d≤v

(S, delay[v])
d−→ (S, delay[v -d])

[delay1]
(S, delay[0])

τ−→ (S, ())
[delay2]

When (S, delay[v])→∗(S, ()), by applying rules [delay1], [delay2], it produces
am empty sequence [], and takes time S(v). By [FV -Delay], S ` {π, θ} delay[v]

{π∧(t=d), θ · ε#t}. Then the post effect π∧(t=d) ∧ θ · ε#t is the witness that
(d1+S(v)),S, (ϕ1++[]) |= π∧(t=v) ∧ θ · ε#t is valid.

5. Timeout:

(S, e1)
A−→ (S ′, e ′1)

(S, e1 timeout[v] e2)
A−→(S ′, e ′1)

[to1]
(S, e1)

τ−→ (S ′, e ′1)

(S, e1 timeout[v] e2)
τ−→(S ′, e ′1 timeout[v]e2)

[to2]

(S, e1)
d−→ (S, e ′1) (d≤v)

(S, e1 timeout[v] e2)
d−→(S, e ′1 timeout[v -d]e2)

[to3]
(S, e1 timeout[0]e2)

τ−→(S, e2)
[to4]

4 Song, Y., Chin, W.N.

When (S, e1 timeout[v] e2)→∗(S ′, v′), there are two possibilities:
- e1 started before time bound S(v): by applying rules [to2], [to3] and [to1], it
produces the concrete sequence [A; tl(ϕ(e1))], and A takes t1 time-units, which
is less than S(v). By [FV -Timeout], S ` {π, θ} e1 timeout[v] e2 {Π1∧t1<v, θ ·
(hd(Θ1)#t1)·tl(Θ1)} where S ` {π, ε}e1{Π1 ,Θ1}. Then the post effect is the witness
such that (d1+t1),S ′, (ϕ1++[A; tl(ϕ(e1))]) |= Π1∧(t1<v) ∧ θ · (hd(Θ1)#t1) · tl(Θ1).
- e1 never started, by applying rules [to4], it takes time d and produces the con-
crete sequence [ϕ(e2)]. By [FV -Timeout], S ` {π, θ} e1 timeout[v] e2 {Π2∧t2=v, θ·
(ε#t2) ·Θ2} where S ` {π, ε}e2{Π2 ,Θ2}. Then the post effect is the witness such
that (d1+d),S ′, (ϕ1++[ϕ(e2)]) |= Π2∧t2=v ∧ θ · (ε#t2) ·Θ2 is valid.

6. Deadline:

(S, e)
A/τ−−→ (S ′, e ′)

(S, deadline[v] e)
A/τ−−→ (S ′, deadline[v] e ′)

[ddl1]

(S, e)
l−→ (S ′, v)

(S, deadline[v] e)
l−→ (S ′, v)

[ddl2]
(S, e)

d−→ (S, e ′) (d≤v)

(S, deadline[v] e)
d−→ (S, deadline[v -d] e ′)

[ddl3]

When (S, deadline[v] e)→∗(S ′, v′), by applying rules [ddl1], [ddl2] and [ddl3],
it produces the concrete sequence [ϕ(e)], and it takes d time-units which is less
than S(v). By [FV -Deadline], S ` {π, θ} deadline[v] e {Π1∧(t≤v), θ ·(Θ1#t)} where
S ` {π, ε}e{Π1 ,Θ1}. Then the post effect is the witness such that
(d1+d),S ′, (ϕ1++[ϕ(e)]) |= Π1∧(t≤v) ∧ θ · (Θ1#t) is valid.

7. Interrupt:

(S, e1)
A/τ−−→ (S ′, e ′1)

(S, e1 interrupt[v] e2)
A/τ−−→ (S ′, e ′1 interrupt[v] e2)

[int1]

(S, e1)
l−→ (S ′, v)

(S, e1 interrupt[v] e2)
l−→(S ′, v)

[int2]
(S, e1 interrupt[0] e2)

τ−→ (S, e2)
[int3]

When (S, e1 interrupt[v] e2)→∗(S ′, v′), by applying rules [int1], [int2] and
[int3], it produces many possible sequences, which depends of how many events
e1 can trigger before time bound v . For example, - when there is only one event
triggered before the time bound, by Algorithm 1, ∆=π∧(t<v) ∧ θ · hd(ϕ(e1))#t .
By [FV -Interrupt], S `{π, θ} e1 interrupt[v] e2 {Π ′, θ·Θ′} where S ` {∆} e2 {Π ′, Θ′}.
Then the post effect is the witness such that
(d1+t+de2),S ′, (ϕ1++[hd(ϕ(e1))]++[ϕ(e2)]) |= π∧(t < v) ∧ θ · hd(ϕ(e1))#t ·Θ ′. is valid.
Similar proofs for other possibilities.

Automated Verification for Real-Time Systems 5

8. Conditional:

S(v) = True

(S, if v e1 e2)
τ−→(S, e1)

[cond1]
S(v) = False

(S, if v e1 e2)
τ−→(S, e2)

[cond2]

When (S, if v e1 e2)→∗(S ′, v′), there are two possibilities:
- when S(v)=True, it takes de1 time units and produces sequence varphi(e1).
By [FV -Cond-Local], S ` {π, θ} if v then e1 else e2 {Π1, θ · τ(v=True) ·Θ1} where
S ` {π, ε} e1 {Π1 ,Θ1}. Then the post effect is the witness such that
(d1+de1),S ′, (ϕ1++[ϕ(e1)]) |= Π1 , θ · τ(v=True) ·Θ1 is valid.
- when S(v)=False it takes de2 time units and produces sequence varphi(e2).
By [FV -Cond-Local], S ` {π, θ} if v then e1 else e2 {Π2, θ · τ(v=True) ·Θ2} where
S ` {π, ε} e2 {Π2 ,Θ2}. Then the post effect is the witness such that
(d1+de2),S ′, (ϕ1++[ϕ(e2)]) |= Π2 , θ · τ(v=False) ·Θ2 is valid.

9. Method Call:

mnx∗ {e}∈P (S, e[v∗/x∗]) l−→(S ′, e′)

(S,mn(v∗))
l−→ (S ′, e ′)

[call]

When (S,mn(v∗)→∗(S ′, v′), it takes de time units and produces sequence
varphi(e). By [FV -Call], S ` {π, θ} mn(v∗) {Φf} where Φf={π, θ} · Φpost[v∗/x∗].
The post effect is the witness of (d1+de),S ′, (ϕ1++[ϕ(e)]) |= {π, θ} · Φpost [v

∗/x∗].

D Termination of the TRS

The TRS is terminating.

Proof. Let Set[I] be a data structure representing the sets of inclusions. We
use S to denote the inclusions to be proved, and H to accumulate ”inductive
hypotheses”, i.e., S ,H ∈ Set [I]. Consider the following partial ordering � on
pairs 〈S ,H 〉: 〈S1 ,H1 〉 � 〈S2 ,H2 〉 iff |H1 | < |H2 | ∨ (|H1 | = |H2 | ∧ |S1 | > |S2 |).

Here |X | stands for the cardinality of a set X . Let ⇒ denote the rewrite
relation, then ⇒∗ denotes its reflexive transitive closure. For any given S0 , H0 ,
this ordering is well founded on the set of pairs {〈S ,H 〉 | 〈S0 ,H0 〉⇒∗〈S ,H 〉}, due
to the fact that H is a subset of the finite set of pairs of all possible derivatives
in initial inclusion. Inference rules in our TRS given in Sec.5 transform current
pairs 〈S ,H 〉 to new pairs 〈S ′,H ′〉. And each rule either increases |H | (Unfolding)
or, otherwise, reduces |S | (Axiom, Disprove, Prove), therefore the system is
terminating.

E Soundness of the TRS

For each inference rules, if inclusions in their premises are valid, and their side
conditions are satisfied, then goal inclusions in their conclusions are valid.

6 Song, Y., Chin, W.N.

Proof. By case analysis for each inference rules:

1. Axiom Rules:

Γ ` π ∧ ⊥ v Φ
[Bot-LHS]

Φ 6= π ∧ ⊥
Γ ` Φ 6v π ∧ ⊥ [Bot-RHS]

- It is easy to verify that antecedent of goal entailments in the rule [Bot-LHS] is
unsatisfiable. Therefore, these entailments are evidently valid.
- It is easy to verify that consequent of goal entailments in the rule [Bot-RHS] is
unsatisfiable. Therefore, these entailments are evidently invalid.

2. Disprove Rules:

δπ1(θ1) ∧ ¬δπ2(θ2)

Γ ` π1 ∧ θ1 6v π2 ∧ θ2
[DISPROVE]

π1 ⇒ π2 fstπ1
(θ1) = {}

Γ ` π1 ∧ θ1 v π2 ∧ θ2
[PROVE]

- It’s straightforward to prove soundness of the rule [DISPROVE], Given that θ1 is
nullable, while θ2 is not nullable, thus clearly the antecedent contains more event
traces than the consequent. Therefore, these entailments are evidently invalid.

3. Prove Rules:

(π1∧θ1 v π3∧θ3) ∈ Γ (π3∧θ3 v π4∧θ4) ∈ Γ (π4∧θ4 v π2∧θ2) ∈ Γ
Γ ` π1 ∧ θ1 v π2 ∧ θ2

[REOCCUR]

- To prove soundness of the rule [PROVE], we consider an arbitrary model, d,S, ϕ
such that: d,S, ϕ |= π1 ∧ θ1. Given the side conditions from the promises, we
get d,S, ϕ |= π2 ∧ θ2. When the fst set of θ1 is empty, θ1 is possible ⊥ or ε and
π2 ∧ θ2 is nullable. For both cases, the inclusion is valid.
- To prove soundness of the rule [REOCCUR], we consider an arbitrary model,
d,S, ϕ such that: d,S, ϕ |= π1 ∧ θ1. Given the promises that π1∧θ1 v π3∧θ3, we
get d,S, ϕ |= π3 ∧ θ3; Given the promise that there exists a hypothesis π3 ∧ θ3 v
π4 ∧ θ4, we get d,S, ϕ |= π4 ∧ θ4; Given the promises that π4 ∧ θ4 v π2 ∧ θ2, we
get d,S, ϕ |= π2 ∧ θ2. Therefore, the inclusion is valid.

4. Unfolding Rule:

H=fstπ1
(θ1) Γ ′=Γ, (π1∧θ1 v π2∧θ2) ∀h∈H. (Γ ′ ` Dπ1

h (θ1) v Dπ2
h (θ2))

Γ ` π1 ∧ θ1 v π2 ∧ θ2
[UNFOLD]

- To prove soundness of [UNFOLD], we consider an arbitrary model, d1,S1, ϕ1

and d2,S2, ϕ2 such that: d1,S1, ϕ1 |= π1 ∧ θ1 and d2,S2, ϕ2 |= π2 ∧ θ2. For an
arbitrary event h, let d′1,S ′1, ϕ1

′ |= h-1Jπ1 ∧ θ1K; and d′2,S ′2, ϕ2
′ |= h-1Jπ2 ∧ θ2K.

Automated Verification for Real-Time Systems 7

Case 1), h /∈ F , d′1, ϕ1
′ |= ⊥, thus automatically d′1, ϕ1

′ |= Dπ2
h (θ2);

Case 2), h ∈ F , given that inclusions in the rule’s premise is valid, then
d′1,S ′1, ϕ1

′ |= Dπ2
h (θ2).

By Definition 3, since for all h, Dπ1
h (θ1) v Dπ2

h (θ2), the conclusion is valid.

All the inference rules used in the TRS are sound, therefore the TRS is sound.

