
Yahui Song, Wei-Ngan Chin

National University of Singapore

25th April TACAS’23 @ Paris, France

Scan Me For the
Project Repository

Automated Temporal Verification

for Real-Time Systems

via Implicit Clocks and an Extended Antimirov Algorithm

Yahui Song, Wei-Ngan Chin

National University of Singapore

25th April TACAS’23 @ Paris, France

Scan Me For the
Project Repository

Automated Temporal Verification

for Real-Time Systems

via Implicit Clocks and an Extended Antimirov Algorithm

Temporal Verification – Existing Framework

Temporal Verification – Existing Framework

Modelling

Temporal Verification – Existing Framework

Modelling

Expressiveness power is limited
by the finite-state automata

Temporal Logic

Property 𝚽

Temporal Verification – Existing Framework

Modelling

To be bounded when
non-terminating

Expressiveness power is limited
by the finite-state automata

Temporal Logic

Property 𝚽

MODEL CHECKER

Temporal Verification – Existing Framework

Modelling

To be bounded when
non-terminating

Expressiveness power is limited
by the finite-state automata

A verified logic
≠

A verified implementation

Temporal Logic

Property 𝚽

MODEL CHECKER

Yes, Property 𝚽 is true No, Property 𝚽 is not true

& counterexamples

A New Framework for Temporal Verification

+ A verified logic = A verified implementation

+ Flexible specifications, which an be combined with other logic.

A New Framework for Temporal Verification

+ A verified logic = A verified implementation

+ Flexible specifications, which an be combined with other logic.

+ Symbolic entailment checker with co-inductive proofs for infinite traces.

A New Framework for Temporal Verification

+ A verified logic = A verified implementation

+ Flexible specifications, which an be combined with other logic.

+ Symbolic entailment checker with co-inductive proofs for infinite traces.

- Automation/Decidability.

Timed Verification via Timed Automata
• Timed Automata lack high-level compositional patterns for hierarchical design.

Diagram modified from “Rewriting Logic Semantics and Symbolic Analysis for Parametric Timed Automata” in FTSCS ’22

3

5
4

8 7

Timed Verification via Timed Automata
• Timed Automata lack high-level compositional patterns for hierarchical design.

• Manually casting clocks is tedious and error-prone.

Diagram modified from “Rewriting Logic Semantics and Symbolic Analysis for Parametric Timed Automata” in FTSCS ’22

3

5
4

8 7

Timed Verification via Timed Automata
• Timed Automata lack high-level compositional patterns for hierarchical design.

• Manually casting clocks is tedious and error-prone.

• Timed process algebras such as timed CSP, is translated to Timed Automata (TA) so that the model

checker Uppaal can be applied.

Diagram modified from “Rewriting Logic Semantics and Symbolic Analysis for Parametric Timed Automata” in FTSCS ’22

3

5
4

8 7

Diagram taken from “Rewriting Logic Semantics and Symbolic Analysis for Parametric Timed Automata” in FTSCS ’22

8

• Timed Automata lack high-level compositional patterns for hierarchical design.

• Manually casting clocks is tedious and error-prone.

• Timed process algebras such as timed CSP, is translated to Timed Automata (TA) so that the model

checker Uppaal can be applied.

Timed Verification via Timed Automata

We propose TimEffs - Symbolic Timed Automata

We propose TimEffs - Symbolic Timed Automata

We propose TimEffs - Symbolic Timed Automata

We propose TimEffs - Symbolic Timed Automata

Hoare-style Forward Verifier

Hoare-style Forward Verifier

Hoare-style Forward Verifier

Hoare-style Forward Verifier

Hoare-style Forward Verifier

Hoare-style Forward Verifier

Hoare-style Forward Verifier

Hoare-style Forward Verifier

Hoare-style Forward Verifier

Hoare-style Forward Verifier

Inclusion Checking – SMT based Term Rewriting

Inclusion Checking – SMT based Term Rewriting

Inclusion Checking – SMT based Term Rewriting

Inclusion Checking – SMT based Term Rewriting

Inclusion Checking – SMT based Term Rewriting

Inclusion Checking – SMT based Term Rewriting

Inclusion Checking – SMT based Term Rewriting

Inclusion Checking – SMT based Term Rewriting

Succeed!

Antimirov algorithm for solving REs’ inclusions

Definition 1 (Derivatives). Given any formal language S over an alphabet Σ and

any string u∈ Σ* , the derivatives of S w.r.t u is defined as: u-1S = {w ∈ Σ* | uw ∈ S}.

Definition 2 (Regular Expression Inclusion). For REs r and s,

r ⪯ s ⟺∀ A∈ Σ. A-1(r) ⪯ A-1(s) .

Definition 3 (TimEffs Inclusion). For TimEffs Φ1 and Φ2,

Φ1 ⊑ Φ2 ⟺∀ A∈ Σ. ∀ t≥0. (A#t)-1 Φ1 ⊑ (A#t)-1 Φ2 .

Antimirov algorithm for solving REs’ inclusions

Definition 1 (Derivatives). Given any formal language S over an alphabet Σ and

any string u∈ Σ* , the derivatives of S w.r.t u is defined as: u-1S = {w ∈ Σ* | uw ∈ S}.

Definition 2 (Regular Expression Inclusion). For REs r and s,

r ⪯ s ⟺∀ A∈ Σ. A-1(r) ⪯ A-1(s) .

Definition 3 (TimEffs Inclusion). For TimEffs Φ1 and Φ2,

Φ1 ⊑ Φ2 ⟺∀ A∈ Σ. ∀ t≥0. (A#t)-1 Φ1 ⊑ (A#t)-1 Φ2 .

Antimirov algorithm for solving REs’ inclusions

Definition 1 (Derivatives). Given any formal language S over an alphabet Σ and

any string u∈ Σ* , the derivatives of S w.r.t u is defined as: u-1S = {w ∈ Σ* | uw ∈ S}.

Definition 2 (Regular Expression Inclusion). For REs r and s,

r ⪯ s ⟺∀ A∈ Σ. A-1(r) ⪯ A-1(s) .

Definition 3 (TimEffs Inclusion). For TimEffs Φ1 and Φ2,

Φ1 ⊑ Φ2 ⟺∀ A∈ Σ. ∀ t≥0. (A#t)-1 Φ1 ⊑ (A#t)-1 Φ2 .

Target Language Ct, imperative with timed constructs:

Specification Language TimEffs:

Implementation and Evaluation
Main Observations:
the disproving times for invalid

properties are constantly lower

than the proving process.

Scan Me For the
Project Repository

Evaluation – Fischer’s Mutual Exclusion Algorithm

Scan Me For the
Project Repository

Evaluation – Fischer’s Mutual Exclusion Algorithm

Scan Me For the
Project Repository

Evaluation – Fischer’s Mutual Exclusion Algorithm

Scan Me For the
Project Repository

Evaluation – Fischer’s Mutual Exclusion Algorithm

Observations:

i. automata-based model checkers (both PAT and Uppaal) are vastly

efficient when given concrete values for constants d and e;

Scan Me For the
Project Repository

Evaluation – Fischer’s Mutual Exclusion Algorithm

Observations:

i. automata-based model checkers (both PAT and Uppaal) are vastly

efficient when given concrete values for constants d and e;

ii. our proposal can symbolically prove the algorithm by only providing

the constraints, of d and e.
Scan Me For the

Project Repository

Evaluation – Fischer’s Mutual Exclusion Algorithm

Observations:

i. automata-based model checkers (both PAT and Uppaal) are vastly

efficient when given concrete values for constants d and e;

ii. our proposal can symbolically prove the algorithm by only providing

the constraints, of d and e.

iii. our verification time largely depends on the number of querying Z3.
Scan Me For the

Project Repository

Scan Me For the
Project Repository

Conclusion

ØNew approach for verifying Real-Time Systems

• Syntax and semantics of the TimEffs

Scan Me For the
Project Repository

Conclusion

ØNew approach for verifying Real-Time Systems

• Syntax and semantics of the TimEffs

• Automated Verification System: Hoare-style forward verifier + TRS

Scan Me For the
Project Repository

Conclusion

ØNew approach for verifying Real-Time Systems

• Syntax and semantics of the TimEffs

• Automated Verification System: Hoare-style forward verifier + TRS

• Prototype system (3000 LOC OCaml): experimental results and case studies

Conclusion

ØNew approach for verifying Real-Time Systems

• Syntax and semantics of the TimEffs

• Automated Verification System: Hoare-style forward verifier + TRS

• Prototype system (3000 LOC OCaml): experimental results and case studies

Thanks!

Scan Me For the
Project Repository

