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Modelling

To be bounded when 
non-terminating

Expressiveness power is limited 
by the finite-state automata

A verified logic 
≠

A verified implementation

Temporal Logic

Property 𝚽

MODEL CHECKER

Yes, Property 𝚽 is true   No, Property 𝚽 is not true 

& counterexamples  



A New Framework for Temporal Verification 

+   A verified logic = A verified implementation

+   Flexible specifications, which an be combined with other logic.



A New Framework for Temporal Verification 

+   A verified logic = A verified implementation

+   Flexible specifications, which an be combined with other logic.

+   Symbolic entailment checker with co-inductive proofs for infinite traces.



A New Framework for Temporal Verification 

+   A verified logic = A verified implementation

+   Flexible specifications, which an be combined with other logic.

+   Symbolic entailment checker with co-inductive proofs for infinite traces.

- Automation/Decidability.
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• Timed Automata lack high-level compositional patterns for hierarchical design. 
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Diagram taken from “Rewriting Logic Semantics and Symbolic Analysis for Parametric Timed Automata” in FTSCS ’22
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• Timed Automata lack high-level compositional patterns for hierarchical design. 

• Manually casting clocks is tedious and error-prone.

• Timed process algebras such as timed CSP, is translated to Timed Automata (TA) so that the model 

checker Uppaal can be applied. 

Timed Verification via Timed Automata
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Inclusion Checking – SMT based Term Rewriting

Succeed!



Antimirov algorithm for solving REs’ inclusions

Definition 1 (Derivatives). Given any formal language S over an alphabet Σ and

any string u∈ Σ* , the derivatives of S w.r.t u is defined as: u-1S = {w ∈ Σ* | uw ∈ S}.

Definition 2 (Regular Expression Inclusion). For REs r and s,

r ⪯ s ⟺∀ A∈ Σ. A-1(r) ⪯ A-1(s) .

Definition 3 (TimEffs Inclusion). For TimEffs Φ1 and Φ2,

Φ1 ⊑ Φ2 ⟺∀ A∈ Σ. ∀ t≥0. (A#t)-1 Φ1 ⊑ (A#t)-1 Φ2 .



Antimirov algorithm for solving REs’ inclusions

Definition 1 (Derivatives). Given any formal language S over an alphabet Σ and

any string u∈ Σ* , the derivatives of S w.r.t u is defined as: u-1S = {w ∈ Σ* | uw ∈ S}.

Definition 2 (Regular Expression Inclusion). For REs r and s,

r ⪯ s ⟺∀ A∈ Σ. A-1(r) ⪯ A-1(s) .

Definition 3 (TimEffs Inclusion). For TimEffs Φ1 and Φ2,

Φ1 ⊑ Φ2 ⟺∀ A∈ Σ. ∀ t≥0. (A#t)-1 Φ1 ⊑ (A#t)-1 Φ2 .



Antimirov algorithm for solving REs’ inclusions

Definition 1 (Derivatives). Given any formal language S over an alphabet Σ and

any string u∈ Σ* , the derivatives of S w.r.t u is defined as: u-1S = {w ∈ Σ* | uw ∈ S}.

Definition 2 (Regular Expression Inclusion). For REs r and s,

r ⪯ s ⟺∀ A∈ Σ. A-1(r) ⪯ A-1(s) .

Definition 3 (TimEffs Inclusion). For TimEffs Φ1 and Φ2,

Φ1 ⊑ Φ2 ⟺∀ A∈ Σ. ∀ t≥0. (A#t)-1 Φ1 ⊑ (A#t)-1 Φ2 .



Target Language Ct, imperative with timed constructs:

Specification Language TimEffs:



Implementation and Evaluation
Main Observations:
the disproving times for invalid

properties are constantly lower

than the proving process.
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Evaluation – Fischer’s Mutual Exclusion Algorithm

Observations:

i. automata-based model checkers (both PAT and Uppaal) are vastly 

efficient when given concrete values for constants d and e;

ii. our proposal can symbolically prove the algorithm by only providing

the constraints, of d and e.

iii. our verification time largely depends on the number of querying Z3.
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